A Survey on Performance Metrics for Object-Detection Algorithms

This work explores and compares the plethora of metrics for the performance evaluation of object-detection algorithms. Average precision (AP),for instance, is a popular metric for evaluating the accuracy of object detectors by estimating the area under the curve (AUC) of the precision × recall relat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Systems, Signals, and Image Processing (Online) s. 237 - 242
Hlavní autoři: Padilla, Rafael, Netto, Sergio L., da Silva, Eduardo A. B.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2020
Témata:
ISSN:2157-8702
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work explores and compares the plethora of metrics for the performance evaluation of object-detection algorithms. Average precision (AP),for instance, is a popular metric for evaluating the accuracy of object detectors by estimating the area under the curve (AUC) of the precision × recall relationship. Depending on the point interpolation used in the plot, two different AP variants can be defined and, therefore, different results are generated. AP has six additional variants increasing the possibilities of benchmarking. The lack of consensus in different works and AP implementations is a problem faced by the academic and scientific communities. Metric implementations written in different computational languages and platforms are usually distributed with corresponding datasets sharing a given bounding-box description. Such projects indeed help the community with evaluation tools, but demand extra work to be adapted for other datasets and bounding-box formats. This work reviews the most used metrics for object detection detaching their differences, applications, and main concepts. It also proposes a standard implementation that can be used as a benchmark among different datasets with minimum adaptation on the annotation files.
ISSN:2157-8702
DOI:10.1109/IWSSIP48289.2020.9145130