On the relation between the maximum errors of the least pth approximation and the minimax approximation by a rational function
This paper deals with the least pth approximation (p even) by a rational function and gives a theoretical lower bound for the ratio of the maximum error of the minimax approximation to that of the least pth approximation. Through numerical examples on various kinds of functions we verified that the...
Uložené v:
| Vydané v: | Circuits and Systems; Proceedings: Midwest Symposium on Circuits and Systems s. 576 - 579 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
IEEE
28.11.2002
|
| Predmet: | |
| ISBN: | 9780818689147, 0818689145 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper deals with the least pth approximation (p even) by a rational function and gives a theoretical lower bound for the ratio of the maximum error of the minimax approximation to that of the least pth approximation. Through numerical examples on various kinds of functions we verified that the above lower bound is a good estimation for the corresponding actual ratios. These results show that the least pth approximation for p=8 or 16 is usually enough to achieve a good approximation to the minimax approximation. |
|---|---|
| ISBN: | 9780818689147 0818689145 |
| DOI: | 10.1109/MWSCAS.1998.759558 |

