Weighted Feature Pyramid Networks for Object Detection

Feature Pyramid Networks (FPN) is a popular feature extraction. However, FPN and its variants do not investigate the influence of resolution information and semantic information in the object detection. Thus, FPN and its variants cannot detect some objects on challenging images. In this paper, based...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) s. 1500 - 1504
Hlavní autoři: Li, Xiaohan, Lai, Taotao, Wang, Shuaiyu, Chen, Quan, Yang, Changcai, Chen, Riqing, Lin, Jinxun, Zheng, Fu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Feature Pyramid Networks (FPN) is a popular feature extraction. However, FPN and its variants do not investigate the influence of resolution information and semantic information in the object detection. Thus, FPN and its variants cannot detect some objects on challenging images. In this paper, based on FPN, we propose to use gaussian kernel function to assign different weight values to semantic information and resolution information for different images in the object detection. The proposed method, is called a Weighted Feature Pyramid Network (WFPN), and shows significant improvement over the traditional feature pyramids in several applications. Using WFPN in Faster R-CNN system, the proposed method achieves better performance on the PASCAL detection benchmark.
DOI:10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00217