HOME: Heatmap Output for future Motion Estimation

In this paper, we propose HOME, a framework tackling the motion forecasting problem with an image output representing the probability distribution of the agent's future location. This method allows for a simple architecture with classic convolution networks coupled with attention mechanism for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 IEEE International Intelligent Transportation Systems Conference (ITSC) s. 500 - 507
Hlavní autori: Gilles, Thomas, Sabatini, Stefano, Tsishkou, Dzmitry, Stanciulescu, Bogdan, Moutarde, Fabien
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 19.09.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose HOME, a framework tackling the motion forecasting problem with an image output representing the probability distribution of the agent's future location. This method allows for a simple architecture with classic convolution networks coupled with attention mechanism for agent interactions, and outputs an unconstrained 2D top-view representation of the agent's possible future. Based on this output, we design two methods to sample a finite set of agent's future locations. These methods allow us to control the optimization trade-off between miss rate and final displacement error for multiple modalities without having to retrain any part of the model. We apply our method to the Argoverse Motion Forecasting Benchmark and achieve 1 st place on the online leaderboard.
AbstractList In this paper, we propose HOME, a framework tackling the motion forecasting problem with an image output representing the probability distribution of the agent's future location. This method allows for a simple architecture with classic convolution networks coupled with attention mechanism for agent interactions, and outputs an unconstrained 2D top-view representation of the agent's possible future. Based on this output, we design two methods to sample a finite set of agent's future locations. These methods allow us to control the optimization trade-off between miss rate and final displacement error for multiple modalities without having to retrain any part of the model. We apply our method to the Argoverse Motion Forecasting Benchmark and achieve 1 st place on the online leaderboard.
Author Sabatini, Stefano
Tsishkou, Dzmitry
Moutarde, Fabien
Stanciulescu, Bogdan
Gilles, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Gilles
  fullname: Gilles, Thomas
  email: thomas.gilles@mines-paristech.fr
  organization: IoV team, Paris Research Center, Huawei Technologies,France
– sequence: 2
  givenname: Stefano
  surname: Sabatini
  fullname: Sabatini, Stefano
  organization: IoV team, Paris Research Center, Huawei Technologies,France
– sequence: 3
  givenname: Dzmitry
  surname: Tsishkou
  fullname: Tsishkou, Dzmitry
  organization: IoV team, Paris Research Center, Huawei Technologies,France
– sequence: 4
  givenname: Bogdan
  surname: Stanciulescu
  fullname: Stanciulescu, Bogdan
  organization: PSL University,MINES ParisTech, Center for robotics
– sequence: 5
  givenname: Fabien
  surname: Moutarde
  fullname: Moutarde, Fabien
  organization: PSL University,MINES ParisTech, Center for robotics
BookMark eNotj81Kw0AUhUfQha0-gSDzAon3zv-4kxBNoSUL67pMOncgYJOQTha-vRW7Omf1ne-s2O0wDsTYM0KJCP5ls_-slPPWlQIEll4b5ZW6YSu0wqFHJdQ9w6bd1a-8oZBPYeLtkqcl8zTOPC15mYnvxtyPA6_PuT-Fv_rA7lL4PtPjNdfs673eV02xbT821du26IXxudDBOAw2OYDUiWPwJNDrSMIm3ZnoAZQ8YjSik_GiBzFa6pDASUlaEsg1e_rn9kR0mObL_PxzuL6Qvy2SQN4
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC48978.2021.9564944
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728191424
9781728191423
EndPage 507
ExternalDocumentID 9564944
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i269t-5a681a7f800fb2ca9e2195de27f5b6d90043c1d62b3d0210dd7eb1e0833e53e03
IEDL.DBID RIE
ISICitedReferencesCount 146
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841862500072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:25 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-5a681a7f800fb2ca9e2195de27f5b6d90043c1d62b3d0210dd7eb1e0833e53e03
PageCount 8
ParticipantIDs ieee_primary_9564944
PublicationCentury 2000
PublicationDate 2021-09-19
PublicationDateYYYYMMDD 2021-09-19
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-19
  day: 19
PublicationDecade 2020
PublicationTitle 2021 IEEE International Intelligent Transportation Systems Conference (ITSC)
PublicationTitleAbbrev ITSC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.3241758
Snippet In this paper, we propose HOME, a framework tackling the motion forecasting problem with an image output representing the probability distribution of the...
SourceID ieee
SourceType Publisher
StartPage 500
SubjectTerms Benchmark testing
Heating systems
Motion estimation
Probability distribution
Sampling methods
Trajectory
Uncertainty
Title HOME: Heatmap Output for future Motion Estimation
URI https://ieeexplore.ieee.org/document/9564944
WOSCitedRecordID wos000841862500072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawMhEJYk9NBTW5LSNx567CZx1XXtNSSkhzygKeQW1BkhlySku_391d0lpdBLLyIiyIw4D2e-GUKemfHGIxeJ86ATAQySPIsDuCGizEDbutmEms_z9VovW-TlhIVBxCr5DPtxWsXyYe_K-FU2CLa80EK0SVspVWO1GtAvG-rB2-p9JPLgFQWvL2X9ZvOvrimV0phc_O-4S9L7Qd_R5UmvXJEW7rqETRez8SudxrRwc6CLsjiUBQ0WJ62rgtBZ1Y6HjsOTrdGIPfIxGa9G06Rpd5Bs00wXiTRZzozywYTzNnVGY5AmEjBVXtrAtBi0cwyy1HKInhqACoIWgw3FUXIc8mvS2e13eEOoBcudUagN98JKsEHkyZgvGuQiaAe3pBvJ3RzqihabhtK7v5fvyXnkaMySYPqBdIpjiY_kzH0V28_jU3UN3_yMiwE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_Dots0m2d14LS1b7Aus0FvJYxZ6aUvd9feb7C4VwYuXEEIgzITMIzPfDMAzVZnKkPHAZFYG3FIbJJEfrOkhishKXTWbiKfTZLmU8wa8HLAwiFgmn2HHT8tYvt2awn-VdZ0tzyXnR3AsOA9phdaqYb-0J7ujxXufJ84vcn5fSDv19l99U0q1MTz_34EX0P7B35H5QbNcQgM3LaDpbDJ4JalPDFc7MivyXZETZ3OSqi4ImZQNecjAPdoKj9iGj-Fg0U-DuuFBsA4jmQdCRQlVceaMuEyHRkl08kRYDONMaMc2H7Yz1EahZtb7atbGTtSis6IYCoY9dgXNzXaD10C01cyoGKViGdfCaif0hM8YdZLRSmNvoOXJXe2qmharmtLbv5ef4DRdTMar8Wj6dgdnnrs-Z4LKe2jm-wIf4MR85evP_WN5Jd9q0Y5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Intelligent+Transportation+Systems+Conference+%28ITSC%29&rft.atitle=HOME%3A+Heatmap+Output+for+future+Motion+Estimation&rft.au=Gilles%2C+Thomas&rft.au=Sabatini%2C+Stefano&rft.au=Tsishkou%2C+Dzmitry&rft.au=Stanciulescu%2C+Bogdan&rft.date=2021-09-19&rft.pub=IEEE&rft.spage=500&rft.epage=507&rft_id=info:doi/10.1109%2FITSC48978.2021.9564944&rft.externalDocID=9564944