Cooper: Cooperative Perception for Connected Autonomous Vehicles Based on 3D Point Clouds

Autonomous vehicles may make wrong decisions due to inaccurate detection and recognition. Therefore, an intelligent vehicle can combine its own data with that of other vehicles to enhance perceptive ability, and thus improve detection accuracy and driving safety. However, multi-vehicle cooperative p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the International Conference on Distributed Computing Systems s. 514 - 524
Hlavní autori: Chen, Qi, Tang, Sihai, Yang, Qing, Fu, Song
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2019
Predmet:
ISSN:2575-8411
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Autonomous vehicles may make wrong decisions due to inaccurate detection and recognition. Therefore, an intelligent vehicle can combine its own data with that of other vehicles to enhance perceptive ability, and thus improve detection accuracy and driving safety. However, multi-vehicle cooperative perception requires the integration of real world scenes and the traffic of raw sensor data exchange far exceeds the bandwidth of existing vehicular networks. To the best our knowledge, we are the first to conduct a study on raw-data level cooperative perception for enhancing the detection ability of self-driving systems. In this work, relying on LiDAR 3D point clouds, we fuse the sensor data collected from different positions and angles of connected vehicles. A point cloud based 3D object detection method is proposed to work on a diversity of aligned point clouds. Experimental results on KITTI and our collected dataset show that the proposed system outperforms perception by extending sensing area, improving detection accuracy and promoting augmented results. Most importantly, we demonstrate it is possible to transmit point clouds data for cooperative perception via existing vehicular network technologies.
AbstractList Autonomous vehicles may make wrong decisions due to inaccurate detection and recognition. Therefore, an intelligent vehicle can combine its own data with that of other vehicles to enhance perceptive ability, and thus improve detection accuracy and driving safety. However, multi-vehicle cooperative perception requires the integration of real world scenes and the traffic of raw sensor data exchange far exceeds the bandwidth of existing vehicular networks. To the best our knowledge, we are the first to conduct a study on raw-data level cooperative perception for enhancing the detection ability of self-driving systems. In this work, relying on LiDAR 3D point clouds, we fuse the sensor data collected from different positions and angles of connected vehicles. A point cloud based 3D object detection method is proposed to work on a diversity of aligned point clouds. Experimental results on KITTI and our collected dataset show that the proposed system outperforms perception by extending sensing area, improving detection accuracy and promoting augmented results. Most importantly, we demonstrate it is possible to transmit point clouds data for cooperative perception via existing vehicular network technologies.
Author Chen, Qi
Fu, Song
Yang, Qing
Tang, Sihai
Author_xml – sequence: 1
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
  organization: University of North Texas
– sequence: 2
  givenname: Sihai
  surname: Tang
  fullname: Tang, Sihai
  organization: University of North Texas
– sequence: 3
  givenname: Qing
  surname: Yang
  fullname: Yang, Qing
  organization: University of North Texas
– sequence: 4
  givenname: Song
  surname: Fu
  fullname: Fu, Song
  organization: University of North Texas
BookMark eNotjltLwzAYhqMouM3dC97kD7TmsCz5vJudh8HAgQfwaqTtF4x0SWlawX9vcV49F8_DyzslZyEGJOSKs5xzBjebYl285IJxyBljypyQOWjDtTBcKA7slEyE0iozC84vyDSlr79sKSfko4ixxe6WHml7_410h12Fbe9joC52owoBqx5ruhr6GOIhDom-46evGkz0zqbRjKlc0130oadFE4c6XZJzZ5uE83_OyNvD_WvxlG2fHzfFapt5sYQ-EwyMNDXnCqxiSjOL42cnK6lAlcKVTBrQKEoQ4EDXUC-kYKUrpTXOYSVn5Pq46xFx33b-YLufvTFGSa3lLwd2U2I
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDCS.2019.00058
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781728125190
1728125197
EISSN 2575-8411
EndPage 524
ExternalDocumentID 8885377
Genre orig-research
GroupedDBID 23M
29G
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i269t-209838d1159a50570ae251f3c3595b2fb03897e2b929f97d9d4320bfb3a8ffec3
IEDL.DBID RIE
ISICitedReferencesCount 282
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565234200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:40:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i269t-209838d1159a50570ae251f3c3595b2fb03897e2b929f97d9d4320bfb3a8ffec3
PageCount 11
ParticipantIDs ieee_primary_8885377
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings of the International Conference on Distributed Computing Systems
PublicationTitleAbbrev ICDSC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0005863
Score 2.5917704
Snippet Autonomous vehicles may make wrong decisions due to inaccurate detection and recognition. Therefore, an intelligent vehicle can combine its own data with that...
SourceID ieee
SourceType Publisher
StartPage 514
SubjectTerms 3D object detection
Accidents
Automobiles
Autonomous vehicles
Connected autonomous vehicles
Cooperative perception
Laser radar
Object detection
point clouds
Sensors
Three-dimensional displays
Title Cooper: Cooperative Perception for Connected Autonomous Vehicles Based on 3D Point Clouds
URI https://ieeexplore.ieee.org/document/8885377
WOSCitedRecordID wos000565234200049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4OnqZv4TQ4ercuSrGm8aedQkFHwg3kaSZriYLRja_37TdJ9ePDiqaE0FPJS3nvN7wPgmtgcEUZKBmGIWcAkx4EkNiBC940zgONYehHXFz4eR5OJSBpws-XCGGM8-MzcuqE_y08LXblfZT3brQ0o501ocs5rrtYOzhGFdHMMiUXvOR7Grw655eQosTN0_2We4nPHqP2_tx5Ad0fCQ8k2vRxCw-RH0N64MKD1R9mBz7goFmZ5h-qrF_JGyRavgmxVijycRdviEt1XpaMx2H4ffZgvj4lDDzaTpcg-SocoKWZ5ieJ5UaWrLryPHt_ip2BtmBDMSChKu-NFRKPUFnlCusYDS2PLl4xqx75VJFNOTY8bomxNlAmeipRRglWmqIwceoQeQysvcnMCiHE9EAr3FVeC9W2frPjAYEq1ncYYJ6fQcSs1XdSaGNP1Ip39ffsc9l0oapjrBbTKZWUuYU9_l7PV8soH8gd2rZ5S
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKehp6hS_zcGjdVmSNo037RwbzlFwyjyNpk1xIO3YWv9-k3QfHrx4aigNhbyU917z-wC4ITpHeL6MHM_DzGERx05EdEBE3FbGAI7jyIq4Dvhw6I_HIqzB7ZoLo5Sy4DN1Z4b2LD_J49L8Kmvpbs2lnG_BtssYaVdsrQ2gw_fo6iASi1Y_6ASvBrtlBCmxsXT_ZZ9is0e38b_37sPRhoaHwnWCOYCayg6hsfJhQMvPsgkfQZ7P1PweVVcr5Y3CNWIF6boUWUBLrMtL9FAWhsigO370rj4tKg496lyWIP0o7aAwn2YFCr7yMlkcwVv3aRT0nKVlgjMlnij0nhc-9RNd5onItB44UrqASWls-LeSpNLo6XFFpK6KUsETkTBKsEwljXyDH6HHUM_yTJ0AYjx2hcRtyaVgbd0pS-4qTGmspzHGySk0zUpNZpUqxmS5SGd_376G3d7oZTAZ9IfP57BnwlKBXi-gXsxLdQk78XcxXcyvbFB_AOEKoZk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+International+Conference+on+Distributed+Computing+Systems&rft.atitle=Cooper%3A+Cooperative+Perception+for+Connected+Autonomous+Vehicles+Based+on+3D+Point+Clouds&rft.au=Chen%2C+Qi&rft.au=Tang%2C+Sihai&rft.au=Yang%2C+Qing&rft.au=Fu%2C+Song&rft.date=2019-07-01&rft.pub=IEEE&rft.eissn=2575-8411&rft.spage=514&rft.epage=524&rft_id=info:doi/10.1109%2FICDCS.2019.00058&rft.externalDocID=8885377