Functional differences between woodland savannas and seasonally dry forests from south-eastern Brazil: Evidence from 15N natural abundance studies

Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem ca...

Full description

Saved in:
Bibliographic Details
Published in:Austral ecology Vol. 36; no. 8; pp. 974 - 982
Main Authors: VIANI, RICARDO A. G., RODRIGUES, RICARDO R., DAWSON, TODD E., OLIVEIRA, RAFAEL S.
Format: Journal Article
Language:English
Published: Melbourne, Australia Blackwell Publishing Asia 01.12.2011
Blackwell Publishing Ltd
Subjects:
ISSN:1442-9985, 1442-9993
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N‐rich seasonally dry forest would have higher soil and leaf δ15N and a smaller range of leaf δ15N values compared to the N‐poor cerradão (savanna woodland). We measured N concentration and δ15N in two soil depths and leaves of 27 woody species in cerradão and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil δ15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher δ15N and total N concentration compared to cerradão soils. Foliar δ15N values varied from −6.4‰ to 5.9‰ in cerradão and from −2.3‰ to 8.4‰ in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of δ15N mean values of the most abundant species and species co‐occurring in both sites confirmed the hypothesis of higher δ15N for seasonally dry forest in comparison to cerradão. These results corroborate the expectation of higher soil and leaf δ15N values in sites with higher soil N availability. However, except for the most abundant species, no across‐site leaf–soil (δ15N leaf –δ15N soil) differences (Δδ15N) were found suggesting that differences in leaf δ15N between cerradão and seasonally dry forest are driven by differences in soil δ15N. Variation of leaf δ15N was large in both sites and only slightly higher in cerradão, suggesting high diversity of N use strategies for both cerradão and seasonally dry forest communities.
AbstractList Abstract Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N-rich seasonally dry forest would have higher soil and leaf δ15N and a smaller range of leaf δ15N values compared to the N-poor cerradão (savanna woodland). We measured N concentration and δ15N in two soil depths and leaves of 27 woody species in cerradão and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil δ15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher δ15N and total N concentration compared to cerradão soils. Foliar δ15N values varied from -6.4[per thousand] to 5.9[per thousand] in cerradão and from -2.3[per thousand] to 8.4[per thousand] in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of δ15N mean values of the most abundant species and species co-occurring in both sites confirmed the hypothesis of higher δ15N for seasonally dry forest in comparison to cerradão. These results corroborate the expectation of higher soil and leaf δ15N values in sites with higher soil N availability. However, except for the most abundant species, no across-site leaf-soil (δ15N leaf -δ15N soil) differences (Δδ15N) were found suggesting that differences in leaf δ15N between cerradão and seasonally dry forest are driven by differences in soil δ15N. Variation of leaf δ15N was large in both sites and only slightly higher in cerradão, suggesting high diversity of N use strategies for both cerradão and seasonally dry forest communities.
Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N‐rich seasonally dry forest would have higher soil and leaf δ15N and a smaller range of leaf δ15N values compared to the N‐poor cerradão (savanna woodland). We measured N concentration and δ15N in two soil depths and leaves of 27 woody species in cerradão and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil δ15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher δ15N and total N concentration compared to cerradão soils. Foliar δ15N values varied from −6.4‰ to 5.9‰ in cerradão and from −2.3‰ to 8.4‰ in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of δ15N mean values of the most abundant species and species co‐occurring in both sites confirmed the hypothesis of higher δ15N for seasonally dry forest in comparison to cerradão. These results corroborate the expectation of higher soil and leaf δ15N values in sites with higher soil N availability. However, except for the most abundant species, no across‐site leaf–soil (δ15N leaf –δ15N soil) differences (Δδ15N) were found suggesting that differences in leaf δ15N between cerradão and seasonally dry forest are driven by differences in soil δ15N. Variation of leaf δ15N was large in both sites and only slightly higher in cerradão, suggesting high diversity of N use strategies for both cerradão and seasonally dry forest communities.
Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values ( delta 15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N-rich seasonally dry forest would have higher soil and leaf delta 15N and a smaller range of leaf delta 15N values compared to the N-poor cerradao (savanna woodland). We measured N concentration and delta 15N in two soil depths and leaves of 27 woody species in cerradao and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil delta 15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher delta 15N and total N concentration compared to cerradao soils. Foliar delta 15N values varied from -6.4ppt to 5.9ppt in cerradao and from -2.3ppt to 8.4ppt in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of delta 15N mean values of the most abundant species and species co-occurring in both sites confirmed the hypothesis of higher delta 15N for seasonally dry forest in comparison to cerradao. These results corroborate the expectation of higher soil and leaf delta 15N values in sites with higher soil N availability. However, except for the most abundant species, no across-site leaf-soil ( delta 15N leaf - delta 15N soil) differences ( Delta delta 15N) were found suggesting that differences in leaf delta 15N between cerradao and seasonally dry forest are driven by differences in soil delta 15N. Variation of leaf delta 15N was large in both sites and only slightly higher in cerradao, suggesting high diversity of N use strategies for both cerradao and seasonally dry forest communities.
Author RODRIGUES, RICARDO R.
VIANI, RICARDO A. G.
OLIVEIRA, RAFAEL S.
DAWSON, TODD E.
Author_xml – sequence: 1
  givenname: RICARDO A. G.
  surname: VIANI
  fullname: VIANI, RICARDO A. G.
  organization: Department of Plant Biology, Biology Institute, State University of Campinas, CP 6109, CEP 13083-970, Campinas, São Paulo, Brazil (Email: ragviani@yahoo.com.br)
– sequence: 2
  givenname: RICARDO R.
  surname: RODRIGUES
  fullname: RODRIGUES, RICARDO R.
  organization: Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
– sequence: 3
  givenname: TODD E.
  surname: DAWSON
  fullname: DAWSON, TODD E.
  organization: Department of Integrative Biology, University of California, Berkeley, USA
– sequence: 4
  givenname: RAFAEL S.
  surname: OLIVEIRA
  fullname: OLIVEIRA, RAFAEL S.
  organization: Department of Plant Biology, Biology Institute, State University of Campinas, CP 6109, CEP 13083-970, Campinas, São Paulo, Brazil (Email: ragviani@yahoo.com.br)
BookMark eNp9kUFvFCEUx4mpiW31OxAvepkVhgEGEw91szvVNPWiqTfCDBBZZ6HCTHe3H8NPLHTNHjzIhfd4v_8j7_0vwJkP3gAAMVrgfN5tFrhp6koIQRY1yq-orglZ7J-B81Ph7BS39AW4SGmDEGqZwOfg93r2w-SCVyPUzloTjR9Mgr2ZdsZ4uAtBj8prmNSD8l4l-JQYlYpkPEAdD9CGaNKUoI1hC1OYpx9VBiYTPfwY1aMb38PVg9Ol85HB9BZ6Nc0x_6r62WtVSmmatTPpJXhu1ZjMq7_3Jfi2Xn1dXlc3X7pPy6ubytVMkCqPyTnGbBAM9RhbwXhjua2NIG2vhW24otgoRtVAjCUCDciKth80o4iKnpNL8ObY9z6GX3MeQG5dGsyYxzVhTlJg2rScYJzJt_8lMUWY0IYImtHX_6CbMMe8qtwPMcxZ0xTowxHaudEc5H10WxUPEiNZLJUbWdySxTlZLJVPlsq9vFotS5T11VHv8pL3J72KPyXjhFN5d9vJ7-u2u-s-d_Ka_AFz3Kmt
ContentType Journal Article
Copyright 2011 The Authors. Journal compilation © 2011 Ecological Society of Australia
Copyright_xml – notice: 2011 The Authors. Journal compilation © 2011 Ecological Society of Australia
DBID BSCLL
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7S9
L.6
7ST
7U6
DOI 10.1111/j.1442-9993.2010.02233.x
DatabaseName Istex
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList Entomology Abstracts
AGRICOLA

Ecology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1442-9993
EndPage 982
ExternalDocumentID 2521301091
AEC2233
ark_67375_WNG_XF8GWGJG_H
Genre article
Feature
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
23N
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
1OB
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ESX
WRC
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7S9
L.6
7ST
7U6
ID FETCH-LOGICAL-i2693-22377116c960b11f9674f7f2e938bd9f47a51ea65ac3ef390c0f98bcd65059b73
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297410700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1442-9985
IngestDate Tue Oct 07 09:50:57 EDT 2025
Fri Oct 03 00:12:05 EDT 2025
Wed Aug 13 03:34:46 EDT 2025
Wed Jan 22 16:44:32 EST 2025
Tue Nov 11 03:30:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2693-22377116c960b11f9674f7f2e938bd9f47a51ea65ac3ef390c0f98bcd65059b73
Notes istex:EC585CF6ED16E2CE55198D582782A428C22A256C
ark:/67375/WNG-XF8GWGJG-H
ArticleID:AEC2233
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 906176445
PQPubID 46239
PageCount 9
ParticipantIDs proquest_miscellaneous_915487311
proquest_miscellaneous_1501354395
proquest_journals_906176445
wiley_primary_10_1111_j_1442_9993_2010_02233_x_AEC2233
istex_primary_ark_67375_WNG_XF8GWGJG_H
PublicationCentury 2000
PublicationDate 2011-12
December 2011
20111201
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12
PublicationDecade 2010
PublicationPlace Melbourne, Australia
PublicationPlace_xml – name: Melbourne, Australia
– name: Richmond
PublicationTitle Austral ecology
PublicationYear 2011
Publisher Blackwell Publishing Asia
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Asia
– name: Blackwell Publishing Ltd
References Amundson R., Austin A. T., Schuur E. A. G. et al. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17, 1-31.
Juhász C. E. P., Cursi P. R., Cooper M., Oliveira T. C. & Rodrigues R. R. (2006) Dinâmica físico-hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP. Rev. Bras. Cienc. Solo 30, 401-12.
Högberg P. (1997) 15N natural abundance in soil-plant system. New Phytol. 137, 179-203.
Mardegan S. R., Nardoto G. B., Higuchi N., Moreira M. Z. & Martinelli L. A. (2009) Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees 23, 479-88.
Faria S. M., Lima H. C., Franco A. A., Mucci E. S. F. & Sprent J. I. (1987) Nodulation of legume trees from South-East Brazil. Plant Soil 99, 347-56.
Poorter L. & Bongers F. (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733-43.
Schulze E. D., Chapin F. S. III & Gebauer G. (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100, 406-12.
Webb C. O., Ackerly D. D. & Kembel S. W. (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24, 2098-100.
Piccolo M. C., Neill C., Melillo J. M., Cerri C. C. & Steudler P. A. (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182, 249-58.
Ackerly D. D. (2000) Taxon sampling, correlated evolution, and independent contrasts. Evolution 54, 1480-92.
Nardoto G. B., Ometto J. P. H. B., Ehleringer J. R., Higuchi N., Bustamante M. M. C. & Martinelli L. A. (2008) Understanding the influences of spatial patterns on the N availability within the Brazilian Amazon Forest. Ecosystems 11, 1234-46.
Tanner E. V. J., Vitousek P. M. & Cuevas E. (1998) Experimental investigation of the role of nutrient supplies in the limitation of forest growth and stature on wet tropical mountains. Ecology 79, 10-22.
Hoffmann W. A., Orthen B. & Franco A. C. (2004) Constrains to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140, 252-60.
Högberg P., Högbom L., Schinkel H., Högberg M., Johannisson C. & Wallmark H. (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108, 207-14.
Schmidt S. & Stewart G. R. (2003) δ15N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status. Oecologia 134, 569-77.
Coletta L. D., Nardoto G. B., Latansio-Aidar S. R., Rocha H. R. R., Aidar M. P. M & Ometto J. P. H. B. (2009) Isotopic view of vegetation and carbon and nitrogen cycles in a cerrado ecosystem, southeastern Brazil. Sci. Agri. 66, 467-75.
Robinson D. (2001) d15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153-62.
Stock W. D., Wienand K. T. & Baker A. C. (1995) Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and 15N natural abundance. Oecologia 101, 375-82.
Webb C. O. & Donoghue M. J. (2005) Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181-3.
Faria S. M., Franco A., Menandro M. S. et al. (1984) Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil. Pesqui. Agropecu. Bras. 19, 143-53.
Sylvester-Bradley R., de Oliveira L. A., de Podesta Filho J. A. & St. John T. V. (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum in representative soils of Central Amazonia. Agro-Ecosystems 6, 249-66.
Reich P. B., Walters M. B. & Ellsworth D. S. (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365-92.
Veloso H. P. (1992) Manual técnico da vegetação brasileira. IBGE-Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro.
Aidar M. P. M., Schmidt S., Moss G., Stewart G. R. & Joly C. A. (2003) Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest. Plant Cell Environ. 26, 389-99.
Evans R. D. (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6, 121-6.
Brenner R. E., Boone R. D. & Ruess R. W. (2005) Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry 72, 257-82.
Houlton B. Z. & Bai E. (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl. Acad. Sci. USA 106, 21713-16.
Schimann H., Ponton S., Hattenschwiler S. et al. (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol. Biochem. 40, 487-94.
Aerts R. & Chapin F. S. III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1-67.
Durigan G. & Ratter J. A. (2006) Successional changes in Cerrado and Cerrado/Forest Ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinb. J. Bot. 63, 119-30.
Michelsen A., Schmidt I. K., Jonasson S., Quarmby C. & Sleep D. (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53-63.
Schmidt S. & Stewart G. R. (1997) Waterlogging and fire impacts on nitrogen availability in a subtropical wet heathland (wallum). Plant Cell Environ. 20, 1231-41.
Ruggiero P. G. C., Batalha M. A., Pivello V. R. & Meirelles S. T. (2002) Soil-vegetation relationships in Cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 160, 1-16.
Smirnoff N., Tood P. & Stewart G. R. (1984) The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot. 54, 363-74.
Gehring C., Vlek P. L. G., Souza L. A. G. & Denich M. (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237-52.
Wright I. J., Reich P. B., Westoby M. et al. (2004) The worldwide leaf economics spectrum. Nature 428, 821-7.
Mariotti A., Germon G. C., Hubert P. et al. (1981) Experimental determination of nitrogen kinetic isotope fractionation - some principles illustration for the denitrification and nitrification processes. Plant Soil 62, 413-30.
Bustamante M. M. C., Martinelli L. A., Silva D. A. et al. (2004) 15N natural abundance in woody plants and soils of central Brazilian savannas (Cerrado). Ecol. Appl. 14, 200-13.
Kahmen A., Wanek W. & Buchmann N. (2008) Foliar d15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861-70.
Bowman D. M. J. S. & Panton W. J. (1993) Factors that control monsoon-rainforest seedling establishment and growth in North Australian Eucalyptus Savanna. J. Ecol. 81, 297-304.
Lamont B. (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot. Rev. 48, 597-689.
Nadelhoffer K., Shaver G., Fry B., Giblin A., Johnson L. & McKane R. (1996) 15N natural abundance and N use by tundra plants. Oecologia 107, 386-94.
Robertson G. P., Huston M. A., Evans F. C. & Tiedje J. M. (1988) Spatial variability in successional plant community: patterns of nitrogen availability. Ecology 69, 1517-24.
Bai E., Boutton T. W., Liu F., Wu X. B., Archer S. R. & Hallmark C. T. (2009) Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna. Oecologia 159, 493-503.
Martinelli L. A., Piccolo M. C., Townsend A. R. et al. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistsry 46, 45-65.
Hobbie E. A., Macko S. A. & Williams M. (2000) Correlations between foliar d15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122, 273-83.
Craine J. M., Elmore A. J., Aidar M. P. M. et al. (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980-92.
Tilman D. (1982) Resource Competition and Community Structure. Princeton University Press, Princeton.
Dawson T. E., Mambelli S., Plamboeck A. H., Templer P. H. & Tu K. P. (2002) Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507-59.
Medina E. & Izaguirre M. L. (2004) N2-fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter. Trop. Ecol. 45, 87-95.
Vitousek P. M., Cassman K., Cleveland C. et al. (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1-45.
Koopmans C. J., Van Dam D., Tietema A. & Verstraten J. M. (1997) Natural 15N abundance in two nitrogen saturated forest ecosystems. Oecologia 111, 470-80.
Furley P. A. & Ratter J. A. (1988) Soil resources and plant communities of the central Brazilian Cerrado and their development. J. Biogeogr. 15, 97-108.
Ometto J. P. H. B., Ehleringer J. R., Domingues T. F. et al. (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251-74.
2006; 30
2006; 79
2002; 57
1997; 111
1999; 46
1996; 182
2003; 17
1996; 108
2009; 159
1996; 107
1996; 105
1994; 100
2006; 63
2000; 54
1984; 54
2008; 24
1984; 19
2001; 16
1982
2000; 122
2005; 72
2008; 156
2009; 23
2009; 66
1987; 99
1997; 137
2005; 111
1997; 20
2010
1993; 81
1988; 15
2004; 140
2004; 45
2002; 33
1998
1994
2005
2008; 11
1992
2004; 428
1981; 62
2003; 134
1982; 48
2002; 160
2001; 6
2006; 87
2004; 14
1988; 69
2000; 30
1980; 6
2005; 5
2003; 26
2009; 183
1995; 101
2008; 40
1992; 62
2009; 106
1998; 79
References_xml – reference: Nadelhoffer K., Shaver G., Fry B., Giblin A., Johnson L. & McKane R. (1996) 15N natural abundance and N use by tundra plants. Oecologia 107, 386-94.
– reference: Wright I. J., Reich P. B., Westoby M. et al. (2004) The worldwide leaf economics spectrum. Nature 428, 821-7.
– reference: Gehring C., Vlek P. L. G., Souza L. A. G. & Denich M. (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237-52.
– reference: Mariotti A., Germon G. C., Hubert P. et al. (1981) Experimental determination of nitrogen kinetic isotope fractionation - some principles illustration for the denitrification and nitrification processes. Plant Soil 62, 413-30.
– reference: Juhász C. E. P., Cursi P. R., Cooper M., Oliveira T. C. & Rodrigues R. R. (2006) Dinâmica físico-hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP. Rev. Bras. Cienc. Solo 30, 401-12.
– reference: Brenner R. E., Boone R. D. & Ruess R. W. (2005) Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry 72, 257-82.
– reference: Bustamante M. M. C., Martinelli L. A., Silva D. A. et al. (2004) 15N natural abundance in woody plants and soils of central Brazilian savannas (Cerrado). Ecol. Appl. 14, 200-13.
– reference: Craine J. M., Elmore A. J., Aidar M. P. M. et al. (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980-92.
– reference: Durigan G. & Ratter J. A. (2006) Successional changes in Cerrado and Cerrado/Forest Ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinb. J. Bot. 63, 119-30.
– reference: Poorter L. & Bongers F. (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733-43.
– reference: Faria S. M., Lima H. C., Franco A. A., Mucci E. S. F. & Sprent J. I. (1987) Nodulation of legume trees from South-East Brazil. Plant Soil 99, 347-56.
– reference: Michelsen A., Schmidt I. K., Jonasson S., Quarmby C. & Sleep D. (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53-63.
– reference: Sylvester-Bradley R., de Oliveira L. A., de Podesta Filho J. A. & St. John T. V. (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum in representative soils of Central Amazonia. Agro-Ecosystems 6, 249-66.
– reference: Dawson T. E., Mambelli S., Plamboeck A. H., Templer P. H. & Tu K. P. (2002) Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507-59.
– reference: Robertson G. P., Huston M. A., Evans F. C. & Tiedje J. M. (1988) Spatial variability in successional plant community: patterns of nitrogen availability. Ecology 69, 1517-24.
– reference: Robinson D. (2001) d15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153-62.
– reference: Vitousek P. M., Cassman K., Cleveland C. et al. (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1-45.
– reference: Lamont B. (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot. Rev. 48, 597-689.
– reference: Smirnoff N., Tood P. & Stewart G. R. (1984) The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot. 54, 363-74.
– reference: Aidar M. P. M., Schmidt S., Moss G., Stewart G. R. & Joly C. A. (2003) Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest. Plant Cell Environ. 26, 389-99.
– reference: Houlton B. Z. & Bai E. (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl. Acad. Sci. USA 106, 21713-16.
– reference: Hoffmann W. A., Orthen B. & Franco A. C. (2004) Constrains to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140, 252-60.
– reference: Bowman D. M. J. S. & Panton W. J. (1993) Factors that control monsoon-rainforest seedling establishment and growth in North Australian Eucalyptus Savanna. J. Ecol. 81, 297-304.
– reference: Ackerly D. D. (2000) Taxon sampling, correlated evolution, and independent contrasts. Evolution 54, 1480-92.
– reference: Nardoto G. B., Ometto J. P. H. B., Ehleringer J. R., Higuchi N., Bustamante M. M. C. & Martinelli L. A. (2008) Understanding the influences of spatial patterns on the N availability within the Brazilian Amazon Forest. Ecosystems 11, 1234-46.
– reference: Webb C. O. & Donoghue M. J. (2005) Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181-3.
– reference: Högberg P., Högbom L., Schinkel H., Högberg M., Johannisson C. & Wallmark H. (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108, 207-14.
– reference: Veloso H. P. (1992) Manual técnico da vegetação brasileira. IBGE-Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro.
– reference: Evans R. D. (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6, 121-6.
– reference: Amundson R., Austin A. T., Schuur E. A. G. et al. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17, 1-31.
– reference: Schimann H., Ponton S., Hattenschwiler S. et al. (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol. Biochem. 40, 487-94.
– reference: Webb C. O., Ackerly D. D. & Kembel S. W. (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24, 2098-100.
– reference: Kahmen A., Wanek W. & Buchmann N. (2008) Foliar d15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861-70.
– reference: Högberg P. (1997) 15N natural abundance in soil-plant system. New Phytol. 137, 179-203.
– reference: Schulze E. D., Chapin F. S. III & Gebauer G. (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100, 406-12.
– reference: Schmidt S. & Stewart G. R. (2003) δ15N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status. Oecologia 134, 569-77.
– reference: Aerts R. & Chapin F. S. III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1-67.
– reference: Koopmans C. J., Van Dam D., Tietema A. & Verstraten J. M. (1997) Natural 15N abundance in two nitrogen saturated forest ecosystems. Oecologia 111, 470-80.
– reference: Schmidt S. & Stewart G. R. (1997) Waterlogging and fire impacts on nitrogen availability in a subtropical wet heathland (wallum). Plant Cell Environ. 20, 1231-41.
– reference: Faria S. M., Franco A., Menandro M. S. et al. (1984) Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil. Pesqui. Agropecu. Bras. 19, 143-53.
– reference: Mardegan S. R., Nardoto G. B., Higuchi N., Moreira M. Z. & Martinelli L. A. (2009) Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees 23, 479-88.
– reference: Medina E. & Izaguirre M. L. (2004) N2-fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter. Trop. Ecol. 45, 87-95.
– reference: Furley P. A. & Ratter J. A. (1988) Soil resources and plant communities of the central Brazilian Cerrado and their development. J. Biogeogr. 15, 97-108.
– reference: Reich P. B., Walters M. B. & Ellsworth D. S. (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365-92.
– reference: Bai E., Boutton T. W., Liu F., Wu X. B., Archer S. R. & Hallmark C. T. (2009) Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna. Oecologia 159, 493-503.
– reference: Tilman D. (1982) Resource Competition and Community Structure. Princeton University Press, Princeton.
– reference: Hobbie E. A., Macko S. A. & Williams M. (2000) Correlations between foliar d15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122, 273-83.
– reference: Martinelli L. A., Piccolo M. C., Townsend A. R. et al. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistsry 46, 45-65.
– reference: Ometto J. P. H. B., Ehleringer J. R., Domingues T. F. et al. (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251-74.
– reference: Piccolo M. C., Neill C., Melillo J. M., Cerri C. C. & Steudler P. A. (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182, 249-58.
– reference: Coletta L. D., Nardoto G. B., Latansio-Aidar S. R., Rocha H. R. R., Aidar M. P. M & Ometto J. P. H. B. (2009) Isotopic view of vegetation and carbon and nitrogen cycles in a cerrado ecosystem, southeastern Brazil. Sci. Agri. 66, 467-75.
– reference: Stock W. D., Wienand K. T. & Baker A. C. (1995) Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and 15N natural abundance. Oecologia 101, 375-82.
– reference: Tanner E. V. J., Vitousek P. M. & Cuevas E. (1998) Experimental investigation of the role of nutrient supplies in the limitation of forest growth and stature on wet tropical mountains. Ecology 79, 10-22.
– reference: Ruggiero P. G. C., Batalha M. A., Pivello V. R. & Meirelles S. T. (2002) Soil-vegetation relationships in Cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 160, 1-16.
– volume: 99
  start-page: 347
  year: 1987
  end-page: 56
  article-title: Nodulation of legume trees from South‐East Brazil
  publication-title: Plant Soil
– year: 2005
– volume: 26
  start-page: 389
  year: 2003
  end-page: 99
  article-title: Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest
  publication-title: Plant Cell Environ.
– volume: 81
  start-page: 297
  year: 1993
  end-page: 304
  article-title: Factors that control monsoon‐rainforest seedling establishment and growth in North Australian Savanna
  publication-title: J. Ecol.
– volume: 62
  start-page: 365
  year: 1992
  end-page: 92
  article-title: Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems
  publication-title: Ecol. Monogr.
– volume: 30
  start-page: 401
  year: 2006
  end-page: 12
  article-title: Dinâmica físico‐hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP
  publication-title: Rev. Bras. Cienc. Solo
– volume: 54
  start-page: 1480
  year: 2000
  end-page: 92
  article-title: Taxon sampling, correlated evolution, and independent contrasts
  publication-title: Evolution
– start-page: 417
  year: 1992
  end-page: 29
– volume: 105
  start-page: 53
  year: 1996
  end-page: 63
  article-title: Leaf N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non‐ and arbuscular mycorrhizal species access different sources of soil nitrogen
  publication-title: Oecologia
– volume: 40
  start-page: 487
  year: 2008
  end-page: 94
  article-title: Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from N natural abundance and microbial activities
  publication-title: Soil Biol. Biochem.
– volume: 54
  start-page: 363
  year: 1984
  end-page: 74
  article-title: The occurrence of nitrate reduction in the leaves of woody plants
  publication-title: Ann. Bot.
– volume: 24
  start-page: 2098
  year: 2008
  end-page: 100
  article-title: Phylocom: software for the analysis of phylogenetic community structure and character evolution
  publication-title: Bioinformatics
– volume: 14
  start-page: 200
  year: 2004
  end-page: 13
  article-title: N natural abundance in woody plants and soils of central Brazilian savannas (Cerrado)
  publication-title: Ecol. Appl.
– volume: 6
  start-page: 121
  year: 2001
  end-page: 6
  article-title: Physiological mechanisms influencing plant nitrogen isotope composition
  publication-title: Trends Plant Sci.
– volume: 108
  start-page: 207
  year: 1996
  end-page: 14
  article-title: N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils
  publication-title: Oecologia
– volume: 17
  start-page: 1
  year: 2003
  end-page: 31
  article-title: Global patterns of the isotopic composition of soil and plant nitrogen
  publication-title: Global Biogeochem. Cycles
– volume: 182
  start-page: 249
  year: 1996
  end-page: 58
  article-title: N natural abundance in forest and pasture soils of the Brazilian Amazon Basin
  publication-title: Plant Soil
– volume: 156
  start-page: 861
  year: 2008
  end-page: 70
  article-title: Foliar d N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient
  publication-title: Oecologia
– volume: 6
  start-page: 249
  year: 1980
  end-page: 66
  article-title: Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen‐fixing in representative soils of Central Amazonia
  publication-title: Agro-Ecosystems
– year: 1982
– volume: 69
  start-page: 1517
  year: 1988
  end-page: 24
  article-title: Spatial variability in successional plant community: patterns of nitrogen availability
  publication-title: Ecology
– volume: 5
  start-page: 181
  year: 2005
  end-page: 3
  article-title: Phylomatic: tree assembly for applied phylogenetics
  publication-title: Mol. Ecol. Notes
– volume: 15
  start-page: 97
  year: 1988
  end-page: 108
  article-title: Soil resources and plant communities of the central Brazilian Cerrado and their development
  publication-title: J. Biogeogr.
– start-page: 17
  year: 1994
  end-page: 23
– volume: 122
  start-page: 273
  year: 2000
  end-page: 83
  article-title: Correlations between foliar d N and nitrogen concentrations may indicate plant‐mycorrhizal interactions
  publication-title: Oecologia
– volume: 46
  start-page: 45
  year: 1999
  end-page: 65
  article-title: Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests
  publication-title: Biogeochemistsry
– volume: 79
  start-page: 251
  year: 2006
  end-page: 74
  article-title: The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil
  publication-title: Biogeochemistry
– volume: 134
  start-page: 569
  year: 2003
  end-page: 77
  article-title: δ N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status
  publication-title: Oecologia
– volume: 100
  start-page: 406
  year: 1994
  end-page: 12
  article-title: Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska
  publication-title: Oecologia
– volume: 111
  start-page: 470
  year: 1997
  end-page: 80
  article-title: Natural N abundance in two nitrogen saturated forest ecosystems
  publication-title: Oecologia
– volume: 79
  start-page: 10
  year: 1998
  end-page: 22
  article-title: Experimental investigation of the role of nutrient supplies in the limitation of forest growth and stature on wet tropical mountains
  publication-title: Ecology
– start-page: 211
  year: 1994
  end-page: 28
– volume: 160
  start-page: 1
  year: 2002
  end-page: 16
  article-title: Soil‐vegetation relationships in Cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil
  publication-title: Plant Ecol.
– volume: 45
  start-page: 87
  year: 2004
  end-page: 95
  article-title: N ‐fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter
  publication-title: Trop. Ecol.
– volume: 11
  start-page: 1234
  year: 2008
  end-page: 46
  article-title: Understanding the influences of spatial patterns on the N availability within the Brazilian Amazon Forest
  publication-title: Ecosystems
– volume: 57
  start-page: 1
  year: 2002
  end-page: 45
  article-title: Towards an ecological understanding of biological nitrogen fixation
  publication-title: Biogeochemistry
– start-page: 89
  year: 1998
  end-page: 166
– year: 1992
– volume: 140
  start-page: 252
  year: 2004
  end-page: 60
  article-title: Constrains to seedling success of savanna and forest trees across the savanna‐forest boundary
  publication-title: Oecologia
– volume: 63
  start-page: 119
  year: 2006
  end-page: 30
  article-title: Successional changes in Cerrado and Cerrado/Forest Ecotonal vegetation in western São Paulo State, Brazil, 1962–2000
  publication-title: Edinb. J. Bot.
– volume: 137
  start-page: 179
  year: 1997
  end-page: 203
  article-title: N natural abundance in soil‐plant system
  publication-title: New Phytol.
– volume: 20
  start-page: 1231
  year: 1997
  end-page: 41
  article-title: Waterlogging and fire impacts on nitrogen availability in a subtropical wet heathland (wallum)
  publication-title: Plant Cell Environ.
– year: 2010
– volume: 107
  start-page: 386
  year: 1996
  end-page: 94
  article-title: N natural abundance and N use by tundra plants
  publication-title: Oecologia
– volume: 19
  start-page: 143
  year: 1984
  end-page: 53
  article-title: Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil
  publication-title: Pesqui. Agropecu. Bras.
– volume: 30
  start-page: 1
  year: 2000
  end-page: 67
  article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns
  publication-title: Adv. Ecol. Res.
– volume: 23
  start-page: 479
  year: 2009
  end-page: 88
  article-title: Nitrogen availability patterns in white‐sand vegetations of Central Brazilian Amazon
  publication-title: Trees
– volume: 183
  start-page: 980
  year: 2009
  end-page: 92
  article-title: Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability
  publication-title: New Phytol.
– volume: 16
  start-page: 153
  year: 2001
  end-page: 62
  article-title: d N as an integrator of the nitrogen cycle
  publication-title: Trends Ecol. Evol.
– volume: 101
  start-page: 375
  year: 1995
  end-page: 82
  article-title: Impacts of invading N ‐fixing species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and N natural abundance
  publication-title: Oecologia
– volume: 159
  start-page: 493
  year: 2009
  end-page: 503
  article-title: Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna
  publication-title: Oecologia
– volume: 62
  start-page: 413
  year: 1981
  end-page: 30
  article-title: Experimental determination of nitrogen kinetic isotope fractionation – some principles illustration for the denitrification and nitrification processes
  publication-title: Plant Soil
– volume: 87
  start-page: 1733
  year: 2006
  end-page: 43
  article-title: Leaf traits are good predictors of plant performance across 53 rain forest species
  publication-title: Ecology
– volume: 106
  start-page: 21713
  year: 2009
  end-page: 16
  article-title: Imprint of denitrifying bacteria on the global terrestrial biosphere
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 72
  start-page: 257
  year: 2005
  end-page: 82
  article-title: Nitrogen additions to pristine, high‐latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession
  publication-title: Biogeochemistry
– volume: 66
  start-page: 467
  year: 2009
  end-page: 75
  article-title: Isotopic view of vegetation and carbon and nitrogen cycles in a cerrado ecosystem, southeastern Brazil
  publication-title: Sci. Agri.
– volume: 33
  start-page: 507
  year: 2002
  end-page: 59
  article-title: Stable isotopes in plant ecology
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 111
  start-page: 237
  year: 2005
  end-page: 52
  article-title: Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia
  publication-title: Agric. Ecosyst. Environ.
– volume: 48
  start-page: 597
  year: 1982
  end-page: 689
  article-title: Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia
  publication-title: Bot. Rev.
– volume: 428
  start-page: 821
  year: 2004
  end-page: 7
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
SSID ssj0008691
Score 2.044403
Snippet Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural...
Abstract Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N...
Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 974
SubjectTerms biogeography
Brazil
cerrado
comparative ecology
Dry forests
Ecosystem assessment
Ecosystems
Flowers & plants
Forest communities
Forest soils
Forests
isotopes
Leaves
Nitrogen
nitrogen content
Savannahs
savannas
Seasons
Soil depth
stable isotope
Stable isotopes
tropical forest
Woodlands
woody plants
Title Functional differences between woodland savannas and seasonally dry forests from south-eastern Brazil: Evidence from 15N natural abundance studies
URI https://api.istex.fr/ark:/67375/WNG-XF8GWGJG-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1442-9993.2010.02233.x
https://www.proquest.com/docview/906176445
https://www.proquest.com/docview/1501354395
https://www.proquest.com/docview/915487311
Volume 36
WOSCitedRecordID wos000297410700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1442-9993
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008691
  issn: 1442-9985
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMcttAWJC9-IpYCMhLgFreM4jrmVstkKoRVCVN2bNXYcadUqRUmLupz6CD30CfskzDjZVYvggrglsuM4yYz9s_O3h7E3PqT0t8sngJ19khnhElPrNMm9qzLQHpmiisEm9HxeLBbmy6B_orUw_f4Qmwk38ozYXpODg-t-c_IsTRBw5KDQwp5OvkOe3ErRjLMR2_r4tdz_vGmXizzGzxuuKtRNXc8fy0JipZd9dgM_r0Ns7IXK-_-z_g_YvYFF-U5vPA_ZrdA8Ynf66JQrPJrGHa1Xj9llib1fP2nI1xFVsH3hg8iLk26HFJK8AwTzBjoeTwJEzj9a8apdcaRjfLCO04IW3lHkvqvzC4ocFNqGf2jh5_LoPV8HOe1zCTXncedRvC84WrNCSV0vfXzC9svpt929ZAjnkCzT3MgEH09rIXKPgyYnRG1yndW6ToORhatMnWlQIkCuwMtQSzPxk9oUzlcIkco4LZ-yUXPchGeMG-TS2ijInYbM-8rABHQKEowOSGBqzN7G72a_91t2WGgPScGmlT2Yz-yiLGYHs08zuzdm2-sPawfn7awhrENOxGJeb1LR6-hXCjTh-LSziNFCKoQ5zMP_ksfE0aAUYszyaAib2lwfeGWpJROwZAI2moA9szvTXTp6_q8XbrO7ce47ym5esNFJexpestv-x8mya18NjvELZw4PzQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMcttAXBhW_EUj6MhLgFreM4jrmVstkFlhVCrbo3a-I40ooqrZK26nLiETjwhDwJM0521SK4IG6J4jhxPGP_7Iz9Z-yF8zH97XIRYGcfJUYUkal0HKWuKBPQDpmiDGITej7PFgvzqZcDorUw3f4Qmwk38ozQXpOD04T0b16exBESjuxDtLCrk68QKLcStCo1YFtvP-f7s03DnKVBQK-_K1OXA3v-mBciK33t80v8eZFiQzeU3_qvBbjNbvY0ync687nDrvj6LrvW6VOu8Ggc9rRe3WM_cuz_umlDvtZUwRaG92FenCJ3KEaSt4BoXkPLw4mHQPqHK142K458jCVrOS1p4S1p9_389p20g3xT8zcNfF0evuZrmdMulVBzHvYexedCQatW6FLbBT_eZ_v5eG93GvWCDtEyTo2MsHhaC5E6HDYVQlQm1Umlq9gbmRWlqRINSnhIFTjpK2lGblSZrHAlYqQyhZYP2KA-qv1Dxg2SaWUUpIWGxLnSwAh0DBKM9shgashehoqzx92mHRaaLxTDppU9mE_sIs8mB5P3Ezsdsu11zdrefVtrCOyQFDGb55ur6Hf0MwVqf3TaWgRpIRXiHKbhf0ljwnhQCjFkabCEzdtcHHolsSUTsGQCNpiAPbc74106evSvNz5j16d7H2d29m7-YZvdCDPhIQjnMRucNKf-Cbvqzk6WbfO095JfsCITvQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMct1ALiUj4rtuXDSIhb0DqO7ZhbaTdboIoqRNW9WRPHllZUaZW0qMuJR-DAE_IkjJ3sqkVwQdwSxXHieMb-2Rn7T8hL69Lwt8smgJ19kmlWJdqrNJG2qjNQFpmijmITqizz2UwfDnJAYS1Mvz_EasIteEZsr4ODu7Pa_-blWZog4fAhRAu7Ov4agXI9E1qil67vfSyODlYNcy6jgN5wVy6uB_b8MS9E1vC1L6_x51WKjd1Qcfe_FuAe2RholO705nOf3HDNA3Kr16dc4NEk7mm9eEh-FNj_9dOGdKmpgi0MHcK8aIjcCTGStANE8wY6Gk8cRNI_WdC6XVDkYyxZR8OSFtoF7b6f374H7SDXNvRtC1_nJ2_oUua0T8VESePeo_hcqMKqlXCp64MfH5GjYvJpdz8ZBB2SeSo1T7B4SjEmLQ6bKsa8lirzyqdO87yqtc8UCOZACrDcea7Hdux1XtkaMVLoSvFNstacNu4xoRrJ1GsBslKQWVtrGINKgYNWDhlMjMirWHHmrN-0w0D7OcSwKWGOy6mZFfn0ePp-avZHZHtZs2Zw387oAHZIipjNi9VV9LvwMwUad3rRGQRpxgXiHKahf0mj43iQMzYiMlrC6m2uDr2y1AQTMMEETDQBc2l2JrvhaOtfb3xObh_uFebgXflhm9yJE-ExBucJWTtvL9xTctN-OZ937bPBSX4BHOcTOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+differences+between+woodland+savannas+and+seasonally+dry+forests+from+south-eastern+Brazil%3A+Evidence+from+15N+natural+abundance+studies&rft.jtitle=Austral+ecology&rft.au=VIANI%2C+RICARDO+A.+G.&rft.au=RODRIGUES%2C+RICARDO+R.&rft.au=DAWSON%2C+TODD+E.&rft.au=OLIVEIRA%2C+RAFAEL+S.&rft.date=2011-12-01&rft.pub=Blackwell+Publishing+Asia&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=36&rft.issue=8&rft.spage=974&rft.epage=982&rft_id=info:doi/10.1111%2Fj.1442-9993.2010.02233.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XF8GWGJG_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon