Functional differences between woodland savannas and seasonally dry forests from south-eastern Brazil: Evidence from 15N natural abundance studies
Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem ca...
Saved in:
| Published in: | Austral ecology Vol. 36; no. 8; pp. 974 - 982 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Melbourne, Australia
Blackwell Publishing Asia
01.12.2011
Blackwell Publishing Ltd |
| Subjects: | |
| ISSN: | 1442-9985, 1442-9993 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N‐rich seasonally dry forest would have higher soil and leaf δ15N and a smaller range of leaf δ15N values compared to the N‐poor cerradão (savanna woodland). We measured N concentration and δ15N in two soil depths and leaves of 27 woody species in cerradão and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil δ15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher δ15N and total N concentration compared to cerradão soils. Foliar δ15N values varied from −6.4‰ to 5.9‰ in cerradão and from −2.3‰ to 8.4‰ in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of δ15N mean values of the most abundant species and species co‐occurring in both sites confirmed the hypothesis of higher δ15N for seasonally dry forest in comparison to cerradão. These results corroborate the expectation of higher soil and leaf δ15N values in sites with higher soil N availability. However, except for the most abundant species, no across‐site leaf–soil (δ15N leaf –δ15N soil) differences (Δδ15N) were found suggesting that differences in leaf δ15N between cerradão and seasonally dry forest are driven by differences in soil δ15N. Variation of leaf δ15N was large in both sites and only slightly higher in cerradão, suggesting high diversity of N use strategies for both cerradão and seasonally dry forest communities. |
|---|---|
| AbstractList | Abstract Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N-rich seasonally dry forest would have higher soil and leaf δ15N and a smaller range of leaf δ15N values compared to the N-poor cerradão (savanna woodland). We measured N concentration and δ15N in two soil depths and leaves of 27 woody species in cerradão and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil δ15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher δ15N and total N concentration compared to cerradão soils. Foliar δ15N values varied from -6.4[per thousand] to 5.9[per thousand] in cerradão and from -2.3[per thousand] to 8.4[per thousand] in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of δ15N mean values of the most abundant species and species co-occurring in both sites confirmed the hypothesis of higher δ15N for seasonally dry forest in comparison to cerradão. These results corroborate the expectation of higher soil and leaf δ15N values in sites with higher soil N availability. However, except for the most abundant species, no across-site leaf-soil (δ15N leaf -δ15N soil) differences (Δδ15N) were found suggesting that differences in leaf δ15N between cerradão and seasonally dry forest are driven by differences in soil δ15N. Variation of leaf δ15N was large in both sites and only slightly higher in cerradão, suggesting high diversity of N use strategies for both cerradão and seasonally dry forest communities. Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values (δ15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N‐rich seasonally dry forest would have higher soil and leaf δ15N and a smaller range of leaf δ15N values compared to the N‐poor cerradão (savanna woodland). We measured N concentration and δ15N in two soil depths and leaves of 27 woody species in cerradão and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil δ15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher δ15N and total N concentration compared to cerradão soils. Foliar δ15N values varied from −6.4‰ to 5.9‰ in cerradão and from −2.3‰ to 8.4‰ in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of δ15N mean values of the most abundant species and species co‐occurring in both sites confirmed the hypothesis of higher δ15N for seasonally dry forest in comparison to cerradão. These results corroborate the expectation of higher soil and leaf δ15N values in sites with higher soil N availability. However, except for the most abundant species, no across‐site leaf–soil (δ15N leaf –δ15N soil) differences (Δδ15N) were found suggesting that differences in leaf δ15N between cerradão and seasonally dry forest are driven by differences in soil δ15N. Variation of leaf δ15N was large in both sites and only slightly higher in cerradão, suggesting high diversity of N use strategies for both cerradão and seasonally dry forest communities. Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural abundance provides a way to assess ecosystem N dynamics, and the range of nitrogen stable isotope values ( delta 15N) for plants in an ecosystem can indicate divergent strategies for N uptake. We tested the hypotheses that the N-rich seasonally dry forest would have higher soil and leaf delta 15N and a smaller range of leaf delta 15N values compared to the N-poor cerradao (savanna woodland). We measured N concentration and delta 15N in two soil depths and leaves of 27 woody species in cerradao and 26 in seasonally dry forest. As expected, total soil N concentration decreased while soil delta 15N value increased with soil depth. Regardless of soil depth, seasonally dry forest soils had higher delta 15N and total N concentration compared to cerradao soils. Foliar delta 15N values varied from -6.4ppt to 5.9ppt in cerradao and from -2.3ppt to 8.4ppt in seasonally dry forest plants. Phylogenetically independent contrasts analysis and comparisons of delta 15N mean values of the most abundant species and species co-occurring in both sites confirmed the hypothesis of higher delta 15N for seasonally dry forest in comparison to cerradao. These results corroborate the expectation of higher soil and leaf delta 15N values in sites with higher soil N availability. However, except for the most abundant species, no across-site leaf-soil ( delta 15N leaf - delta 15N soil) differences ( Delta delta 15N) were found suggesting that differences in leaf delta 15N between cerradao and seasonally dry forest are driven by differences in soil delta 15N. Variation of leaf delta 15N was large in both sites and only slightly higher in cerradao, suggesting high diversity of N use strategies for both cerradao and seasonally dry forest communities. |
| Author | RODRIGUES, RICARDO R. VIANI, RICARDO A. G. OLIVEIRA, RAFAEL S. DAWSON, TODD E. |
| Author_xml | – sequence: 1 givenname: RICARDO A. G. surname: VIANI fullname: VIANI, RICARDO A. G. organization: Department of Plant Biology, Biology Institute, State University of Campinas, CP 6109, CEP 13083-970, Campinas, São Paulo, Brazil (Email: ragviani@yahoo.com.br) – sequence: 2 givenname: RICARDO R. surname: RODRIGUES fullname: RODRIGUES, RICARDO R. organization: Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil – sequence: 3 givenname: TODD E. surname: DAWSON fullname: DAWSON, TODD E. organization: Department of Integrative Biology, University of California, Berkeley, USA – sequence: 4 givenname: RAFAEL S. surname: OLIVEIRA fullname: OLIVEIRA, RAFAEL S. organization: Department of Plant Biology, Biology Institute, State University of Campinas, CP 6109, CEP 13083-970, Campinas, São Paulo, Brazil (Email: ragviani@yahoo.com.br) |
| BookMark | eNp9kUFvFCEUx4mpiW31OxAvepkVhgEGEw91szvVNPWiqTfCDBBZZ6HCTHe3H8NPLHTNHjzIhfd4v_8j7_0vwJkP3gAAMVrgfN5tFrhp6koIQRY1yq-orglZ7J-B81Ph7BS39AW4SGmDEGqZwOfg93r2w-SCVyPUzloTjR9Mgr2ZdsZ4uAtBj8prmNSD8l4l-JQYlYpkPEAdD9CGaNKUoI1hC1OYpx9VBiYTPfwY1aMb38PVg9Ol85HB9BZ6Nc0x_6r62WtVSmmatTPpJXhu1ZjMq7_3Jfi2Xn1dXlc3X7pPy6ubytVMkCqPyTnGbBAM9RhbwXhjua2NIG2vhW24otgoRtVAjCUCDciKth80o4iKnpNL8ObY9z6GX3MeQG5dGsyYxzVhTlJg2rScYJzJt_8lMUWY0IYImtHX_6CbMMe8qtwPMcxZ0xTowxHaudEc5H10WxUPEiNZLJUbWdySxTlZLJVPlsq9vFotS5T11VHv8pL3J72KPyXjhFN5d9vJ7-u2u-s-d_Ka_AFz3Kmt |
| ContentType | Journal Article |
| Copyright | 2011 The Authors. Journal compilation © 2011 Ecological Society of Australia |
| Copyright_xml | – notice: 2011 The Authors. Journal compilation © 2011 Ecological Society of Australia |
| DBID | BSCLL 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7S9 L.6 7ST 7U6 |
| DOI | 10.1111/j.1442-9993.2010.02233.x |
| DatabaseName | Istex Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Environment Abstracts Sustainability Science Abstracts |
| DatabaseTitle | Entomology Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Environment Abstracts Sustainability Science Abstracts |
| DatabaseTitleList | Entomology Abstracts AGRICOLA Ecology Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1442-9993 |
| EndPage | 982 |
| ExternalDocumentID | 2521301091 AEC2233 ark_67375_WNG_XF8GWGJG_H |
| Genre | article Feature |
| GeographicLocations | Brazil |
| GeographicLocations_xml | – name: Brazil |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 23N 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~KM ~WT 1OB AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN ESX WRC 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7S9 L.6 7ST 7U6 |
| ID | FETCH-LOGICAL-i2693-22377116c960b11f9674f7f2e938bd9f47a51ea65ac3ef390c0f98bcd65059b73 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297410700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1442-9985 |
| IngestDate | Tue Oct 07 09:50:57 EDT 2025 Fri Oct 03 00:12:05 EDT 2025 Wed Aug 13 03:34:46 EDT 2025 Wed Jan 22 16:44:32 EST 2025 Tue Nov 11 03:30:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i2693-22377116c960b11f9674f7f2e938bd9f47a51ea65ac3ef390c0f98bcd65059b73 |
| Notes | istex:EC585CF6ED16E2CE55198D582782A428C22A256C ark:/67375/WNG-XF8GWGJG-H ArticleID:AEC2233 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 906176445 |
| PQPubID | 46239 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_915487311 proquest_miscellaneous_1501354395 proquest_journals_906176445 wiley_primary_10_1111_j_1442_9993_2010_02233_x_AEC2233 istex_primary_ark_67375_WNG_XF8GWGJG_H |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12 December 2011 20111201 |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12 |
| PublicationDecade | 2010 |
| PublicationPlace | Melbourne, Australia |
| PublicationPlace_xml | – name: Melbourne, Australia – name: Richmond |
| PublicationTitle | Austral ecology |
| PublicationYear | 2011 |
| Publisher | Blackwell Publishing Asia Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Asia – name: Blackwell Publishing Ltd |
| References | Amundson R., Austin A. T., Schuur E. A. G. et al. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17, 1-31. Juhász C. E. P., Cursi P. R., Cooper M., Oliveira T. C. & Rodrigues R. R. (2006) Dinâmica físico-hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP. Rev. Bras. Cienc. Solo 30, 401-12. Högberg P. (1997) 15N natural abundance in soil-plant system. New Phytol. 137, 179-203. Mardegan S. R., Nardoto G. B., Higuchi N., Moreira M. Z. & Martinelli L. A. (2009) Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees 23, 479-88. Faria S. M., Lima H. C., Franco A. A., Mucci E. S. F. & Sprent J. I. (1987) Nodulation of legume trees from South-East Brazil. Plant Soil 99, 347-56. Poorter L. & Bongers F. (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733-43. Schulze E. D., Chapin F. S. III & Gebauer G. (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100, 406-12. Webb C. O., Ackerly D. D. & Kembel S. W. (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24, 2098-100. Piccolo M. C., Neill C., Melillo J. M., Cerri C. C. & Steudler P. A. (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182, 249-58. Ackerly D. D. (2000) Taxon sampling, correlated evolution, and independent contrasts. Evolution 54, 1480-92. Nardoto G. B., Ometto J. P. H. B., Ehleringer J. R., Higuchi N., Bustamante M. M. C. & Martinelli L. A. (2008) Understanding the influences of spatial patterns on the N availability within the Brazilian Amazon Forest. Ecosystems 11, 1234-46. Tanner E. V. J., Vitousek P. M. & Cuevas E. (1998) Experimental investigation of the role of nutrient supplies in the limitation of forest growth and stature on wet tropical mountains. Ecology 79, 10-22. Hoffmann W. A., Orthen B. & Franco A. C. (2004) Constrains to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140, 252-60. Högberg P., Högbom L., Schinkel H., Högberg M., Johannisson C. & Wallmark H. (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108, 207-14. Schmidt S. & Stewart G. R. (2003) δ15N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status. Oecologia 134, 569-77. Coletta L. D., Nardoto G. B., Latansio-Aidar S. R., Rocha H. R. R., Aidar M. P. M & Ometto J. P. H. B. (2009) Isotopic view of vegetation and carbon and nitrogen cycles in a cerrado ecosystem, southeastern Brazil. Sci. Agri. 66, 467-75. Robinson D. (2001) d15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153-62. Stock W. D., Wienand K. T. & Baker A. C. (1995) Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and 15N natural abundance. Oecologia 101, 375-82. Webb C. O. & Donoghue M. J. (2005) Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181-3. Faria S. M., Franco A., Menandro M. S. et al. (1984) Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil. Pesqui. Agropecu. Bras. 19, 143-53. Sylvester-Bradley R., de Oliveira L. A., de Podesta Filho J. A. & St. John T. V. (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum in representative soils of Central Amazonia. Agro-Ecosystems 6, 249-66. Reich P. B., Walters M. B. & Ellsworth D. S. (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365-92. Veloso H. P. (1992) Manual técnico da vegetação brasileira. IBGE-Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro. Aidar M. P. M., Schmidt S., Moss G., Stewart G. R. & Joly C. A. (2003) Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest. Plant Cell Environ. 26, 389-99. Evans R. D. (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6, 121-6. Brenner R. E., Boone R. D. & Ruess R. W. (2005) Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry 72, 257-82. Houlton B. Z. & Bai E. (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl. Acad. Sci. USA 106, 21713-16. Schimann H., Ponton S., Hattenschwiler S. et al. (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol. Biochem. 40, 487-94. Aerts R. & Chapin F. S. III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1-67. Durigan G. & Ratter J. A. (2006) Successional changes in Cerrado and Cerrado/Forest Ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinb. J. Bot. 63, 119-30. Michelsen A., Schmidt I. K., Jonasson S., Quarmby C. & Sleep D. (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53-63. Schmidt S. & Stewart G. R. (1997) Waterlogging and fire impacts on nitrogen availability in a subtropical wet heathland (wallum). Plant Cell Environ. 20, 1231-41. Ruggiero P. G. C., Batalha M. A., Pivello V. R. & Meirelles S. T. (2002) Soil-vegetation relationships in Cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 160, 1-16. Smirnoff N., Tood P. & Stewart G. R. (1984) The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot. 54, 363-74. Gehring C., Vlek P. L. G., Souza L. A. G. & Denich M. (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237-52. Wright I. J., Reich P. B., Westoby M. et al. (2004) The worldwide leaf economics spectrum. Nature 428, 821-7. Mariotti A., Germon G. C., Hubert P. et al. (1981) Experimental determination of nitrogen kinetic isotope fractionation - some principles illustration for the denitrification and nitrification processes. Plant Soil 62, 413-30. Bustamante M. M. C., Martinelli L. A., Silva D. A. et al. (2004) 15N natural abundance in woody plants and soils of central Brazilian savannas (Cerrado). Ecol. Appl. 14, 200-13. Kahmen A., Wanek W. & Buchmann N. (2008) Foliar d15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861-70. Bowman D. M. J. S. & Panton W. J. (1993) Factors that control monsoon-rainforest seedling establishment and growth in North Australian Eucalyptus Savanna. J. Ecol. 81, 297-304. Lamont B. (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot. Rev. 48, 597-689. Nadelhoffer K., Shaver G., Fry B., Giblin A., Johnson L. & McKane R. (1996) 15N natural abundance and N use by tundra plants. Oecologia 107, 386-94. Robertson G. P., Huston M. A., Evans F. C. & Tiedje J. M. (1988) Spatial variability in successional plant community: patterns of nitrogen availability. Ecology 69, 1517-24. Bai E., Boutton T. W., Liu F., Wu X. B., Archer S. R. & Hallmark C. T. (2009) Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna. Oecologia 159, 493-503. Martinelli L. A., Piccolo M. C., Townsend A. R. et al. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistsry 46, 45-65. Hobbie E. A., Macko S. A. & Williams M. (2000) Correlations between foliar d15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122, 273-83. Craine J. M., Elmore A. J., Aidar M. P. M. et al. (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980-92. Tilman D. (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. Dawson T. E., Mambelli S., Plamboeck A. H., Templer P. H. & Tu K. P. (2002) Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507-59. Medina E. & Izaguirre M. L. (2004) N2-fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter. Trop. Ecol. 45, 87-95. Vitousek P. M., Cassman K., Cleveland C. et al. (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1-45. Koopmans C. J., Van Dam D., Tietema A. & Verstraten J. M. (1997) Natural 15N abundance in two nitrogen saturated forest ecosystems. Oecologia 111, 470-80. Furley P. A. & Ratter J. A. (1988) Soil resources and plant communities of the central Brazilian Cerrado and their development. J. Biogeogr. 15, 97-108. Ometto J. P. H. B., Ehleringer J. R., Domingues T. F. et al. (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251-74. 2006; 30 2006; 79 2002; 57 1997; 111 1999; 46 1996; 182 2003; 17 1996; 108 2009; 159 1996; 107 1996; 105 1994; 100 2006; 63 2000; 54 1984; 54 2008; 24 1984; 19 2001; 16 1982 2000; 122 2005; 72 2008; 156 2009; 23 2009; 66 1987; 99 1997; 137 2005; 111 1997; 20 2010 1993; 81 1988; 15 2004; 140 2004; 45 2002; 33 1998 1994 2005 2008; 11 1992 2004; 428 1981; 62 2003; 134 1982; 48 2002; 160 2001; 6 2006; 87 2004; 14 1988; 69 2000; 30 1980; 6 2005; 5 2003; 26 2009; 183 1995; 101 2008; 40 1992; 62 2009; 106 1998; 79 |
| References_xml | – reference: Nadelhoffer K., Shaver G., Fry B., Giblin A., Johnson L. & McKane R. (1996) 15N natural abundance and N use by tundra plants. Oecologia 107, 386-94. – reference: Wright I. J., Reich P. B., Westoby M. et al. (2004) The worldwide leaf economics spectrum. Nature 428, 821-7. – reference: Gehring C., Vlek P. L. G., Souza L. A. G. & Denich M. (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric. Ecosyst. Environ. 111, 237-52. – reference: Mariotti A., Germon G. C., Hubert P. et al. (1981) Experimental determination of nitrogen kinetic isotope fractionation - some principles illustration for the denitrification and nitrification processes. Plant Soil 62, 413-30. – reference: Juhász C. E. P., Cursi P. R., Cooper M., Oliveira T. C. & Rodrigues R. R. (2006) Dinâmica físico-hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP. Rev. Bras. Cienc. Solo 30, 401-12. – reference: Brenner R. E., Boone R. D. & Ruess R. W. (2005) Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry 72, 257-82. – reference: Bustamante M. M. C., Martinelli L. A., Silva D. A. et al. (2004) 15N natural abundance in woody plants and soils of central Brazilian savannas (Cerrado). Ecol. Appl. 14, 200-13. – reference: Craine J. M., Elmore A. J., Aidar M. P. M. et al. (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980-92. – reference: Durigan G. & Ratter J. A. (2006) Successional changes in Cerrado and Cerrado/Forest Ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinb. J. Bot. 63, 119-30. – reference: Poorter L. & Bongers F. (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733-43. – reference: Faria S. M., Lima H. C., Franco A. A., Mucci E. S. F. & Sprent J. I. (1987) Nodulation of legume trees from South-East Brazil. Plant Soil 99, 347-56. – reference: Michelsen A., Schmidt I. K., Jonasson S., Quarmby C. & Sleep D. (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53-63. – reference: Sylvester-Bradley R., de Oliveira L. A., de Podesta Filho J. A. & St. John T. V. (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum in representative soils of Central Amazonia. Agro-Ecosystems 6, 249-66. – reference: Dawson T. E., Mambelli S., Plamboeck A. H., Templer P. H. & Tu K. P. (2002) Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33, 507-59. – reference: Robertson G. P., Huston M. A., Evans F. C. & Tiedje J. M. (1988) Spatial variability in successional plant community: patterns of nitrogen availability. Ecology 69, 1517-24. – reference: Robinson D. (2001) d15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153-62. – reference: Vitousek P. M., Cassman K., Cleveland C. et al. (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1-45. – reference: Lamont B. (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot. Rev. 48, 597-689. – reference: Smirnoff N., Tood P. & Stewart G. R. (1984) The occurrence of nitrate reduction in the leaves of woody plants. Ann. Bot. 54, 363-74. – reference: Aidar M. P. M., Schmidt S., Moss G., Stewart G. R. & Joly C. A. (2003) Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest. Plant Cell Environ. 26, 389-99. – reference: Houlton B. Z. & Bai E. (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl. Acad. Sci. USA 106, 21713-16. – reference: Hoffmann W. A., Orthen B. & Franco A. C. (2004) Constrains to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140, 252-60. – reference: Bowman D. M. J. S. & Panton W. J. (1993) Factors that control monsoon-rainforest seedling establishment and growth in North Australian Eucalyptus Savanna. J. Ecol. 81, 297-304. – reference: Ackerly D. D. (2000) Taxon sampling, correlated evolution, and independent contrasts. Evolution 54, 1480-92. – reference: Nardoto G. B., Ometto J. P. H. B., Ehleringer J. R., Higuchi N., Bustamante M. M. C. & Martinelli L. A. (2008) Understanding the influences of spatial patterns on the N availability within the Brazilian Amazon Forest. Ecosystems 11, 1234-46. – reference: Webb C. O. & Donoghue M. J. (2005) Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181-3. – reference: Högberg P., Högbom L., Schinkel H., Högberg M., Johannisson C. & Wallmark H. (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108, 207-14. – reference: Veloso H. P. (1992) Manual técnico da vegetação brasileira. IBGE-Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro. – reference: Evans R. D. (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6, 121-6. – reference: Amundson R., Austin A. T., Schuur E. A. G. et al. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17, 1-31. – reference: Schimann H., Ponton S., Hattenschwiler S. et al. (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol. Biochem. 40, 487-94. – reference: Webb C. O., Ackerly D. D. & Kembel S. W. (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24, 2098-100. – reference: Kahmen A., Wanek W. & Buchmann N. (2008) Foliar d15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861-70. – reference: Högberg P. (1997) 15N natural abundance in soil-plant system. New Phytol. 137, 179-203. – reference: Schulze E. D., Chapin F. S. III & Gebauer G. (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100, 406-12. – reference: Schmidt S. & Stewart G. R. (2003) δ15N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status. Oecologia 134, 569-77. – reference: Aerts R. & Chapin F. S. III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1-67. – reference: Koopmans C. J., Van Dam D., Tietema A. & Verstraten J. M. (1997) Natural 15N abundance in two nitrogen saturated forest ecosystems. Oecologia 111, 470-80. – reference: Schmidt S. & Stewart G. R. (1997) Waterlogging and fire impacts on nitrogen availability in a subtropical wet heathland (wallum). Plant Cell Environ. 20, 1231-41. – reference: Faria S. M., Franco A., Menandro M. S. et al. (1984) Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil. Pesqui. Agropecu. Bras. 19, 143-53. – reference: Mardegan S. R., Nardoto G. B., Higuchi N., Moreira M. Z. & Martinelli L. A. (2009) Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon. Trees 23, 479-88. – reference: Medina E. & Izaguirre M. L. (2004) N2-fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter. Trop. Ecol. 45, 87-95. – reference: Furley P. A. & Ratter J. A. (1988) Soil resources and plant communities of the central Brazilian Cerrado and their development. J. Biogeogr. 15, 97-108. – reference: Reich P. B., Walters M. B. & Ellsworth D. S. (1992) Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365-92. – reference: Bai E., Boutton T. W., Liu F., Wu X. B., Archer S. R. & Hallmark C. T. (2009) Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna. Oecologia 159, 493-503. – reference: Tilman D. (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. – reference: Hobbie E. A., Macko S. A. & Williams M. (2000) Correlations between foliar d15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122, 273-83. – reference: Martinelli L. A., Piccolo M. C., Townsend A. R. et al. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistsry 46, 45-65. – reference: Ometto J. P. H. B., Ehleringer J. R., Domingues T. F. et al. (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251-74. – reference: Piccolo M. C., Neill C., Melillo J. M., Cerri C. C. & Steudler P. A. (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182, 249-58. – reference: Coletta L. D., Nardoto G. B., Latansio-Aidar S. R., Rocha H. R. R., Aidar M. P. M & Ometto J. P. H. B. (2009) Isotopic view of vegetation and carbon and nitrogen cycles in a cerrado ecosystem, southeastern Brazil. Sci. Agri. 66, 467-75. – reference: Stock W. D., Wienand K. T. & Baker A. C. (1995) Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and 15N natural abundance. Oecologia 101, 375-82. – reference: Tanner E. V. J., Vitousek P. M. & Cuevas E. (1998) Experimental investigation of the role of nutrient supplies in the limitation of forest growth and stature on wet tropical mountains. Ecology 79, 10-22. – reference: Ruggiero P. G. C., Batalha M. A., Pivello V. R. & Meirelles S. T. (2002) Soil-vegetation relationships in Cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 160, 1-16. – volume: 99 start-page: 347 year: 1987 end-page: 56 article-title: Nodulation of legume trees from South‐East Brazil publication-title: Plant Soil – year: 2005 – volume: 26 start-page: 389 year: 2003 end-page: 99 article-title: Nitrogen use strategies of neotropical rainforest trees in threatened Atlantic Forest publication-title: Plant Cell Environ. – volume: 81 start-page: 297 year: 1993 end-page: 304 article-title: Factors that control monsoon‐rainforest seedling establishment and growth in North Australian Savanna publication-title: J. Ecol. – volume: 62 start-page: 365 year: 1992 end-page: 92 article-title: Leaf lifespan in relation to leaf, plant and stand characteristics among diverse ecosystems publication-title: Ecol. Monogr. – volume: 30 start-page: 401 year: 2006 end-page: 12 article-title: Dinâmica físico‐hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP publication-title: Rev. Bras. Cienc. Solo – volume: 54 start-page: 1480 year: 2000 end-page: 92 article-title: Taxon sampling, correlated evolution, and independent contrasts publication-title: Evolution – start-page: 417 year: 1992 end-page: 29 – volume: 105 start-page: 53 year: 1996 end-page: 63 article-title: Leaf N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non‐ and arbuscular mycorrhizal species access different sources of soil nitrogen publication-title: Oecologia – volume: 40 start-page: 487 year: 2008 end-page: 94 article-title: Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from N natural abundance and microbial activities publication-title: Soil Biol. Biochem. – volume: 54 start-page: 363 year: 1984 end-page: 74 article-title: The occurrence of nitrate reduction in the leaves of woody plants publication-title: Ann. Bot. – volume: 24 start-page: 2098 year: 2008 end-page: 100 article-title: Phylocom: software for the analysis of phylogenetic community structure and character evolution publication-title: Bioinformatics – volume: 14 start-page: 200 year: 2004 end-page: 13 article-title: N natural abundance in woody plants and soils of central Brazilian savannas (Cerrado) publication-title: Ecol. Appl. – volume: 6 start-page: 121 year: 2001 end-page: 6 article-title: Physiological mechanisms influencing plant nitrogen isotope composition publication-title: Trends Plant Sci. – volume: 108 start-page: 207 year: 1996 end-page: 14 article-title: N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils publication-title: Oecologia – volume: 17 start-page: 1 year: 2003 end-page: 31 article-title: Global patterns of the isotopic composition of soil and plant nitrogen publication-title: Global Biogeochem. Cycles – volume: 182 start-page: 249 year: 1996 end-page: 58 article-title: N natural abundance in forest and pasture soils of the Brazilian Amazon Basin publication-title: Plant Soil – volume: 156 start-page: 861 year: 2008 end-page: 70 article-title: Foliar d N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient publication-title: Oecologia – volume: 6 start-page: 249 year: 1980 end-page: 66 article-title: Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen‐fixing in representative soils of Central Amazonia publication-title: Agro-Ecosystems – year: 1982 – volume: 69 start-page: 1517 year: 1988 end-page: 24 article-title: Spatial variability in successional plant community: patterns of nitrogen availability publication-title: Ecology – volume: 5 start-page: 181 year: 2005 end-page: 3 article-title: Phylomatic: tree assembly for applied phylogenetics publication-title: Mol. Ecol. Notes – volume: 15 start-page: 97 year: 1988 end-page: 108 article-title: Soil resources and plant communities of the central Brazilian Cerrado and their development publication-title: J. Biogeogr. – start-page: 17 year: 1994 end-page: 23 – volume: 122 start-page: 273 year: 2000 end-page: 83 article-title: Correlations between foliar d N and nitrogen concentrations may indicate plant‐mycorrhizal interactions publication-title: Oecologia – volume: 46 start-page: 45 year: 1999 end-page: 65 article-title: Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests publication-title: Biogeochemistsry – volume: 79 start-page: 251 year: 2006 end-page: 74 article-title: The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil publication-title: Biogeochemistry – volume: 134 start-page: 569 year: 2003 end-page: 77 article-title: δ N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status publication-title: Oecologia – volume: 100 start-page: 406 year: 1994 end-page: 12 article-title: Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska publication-title: Oecologia – volume: 111 start-page: 470 year: 1997 end-page: 80 article-title: Natural N abundance in two nitrogen saturated forest ecosystems publication-title: Oecologia – volume: 79 start-page: 10 year: 1998 end-page: 22 article-title: Experimental investigation of the role of nutrient supplies in the limitation of forest growth and stature on wet tropical mountains publication-title: Ecology – start-page: 211 year: 1994 end-page: 28 – volume: 160 start-page: 1 year: 2002 end-page: 16 article-title: Soil‐vegetation relationships in Cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil publication-title: Plant Ecol. – volume: 45 start-page: 87 year: 2004 end-page: 95 article-title: N ‐fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter publication-title: Trop. Ecol. – volume: 11 start-page: 1234 year: 2008 end-page: 46 article-title: Understanding the influences of spatial patterns on the N availability within the Brazilian Amazon Forest publication-title: Ecosystems – volume: 57 start-page: 1 year: 2002 end-page: 45 article-title: Towards an ecological understanding of biological nitrogen fixation publication-title: Biogeochemistry – start-page: 89 year: 1998 end-page: 166 – year: 1992 – volume: 140 start-page: 252 year: 2004 end-page: 60 article-title: Constrains to seedling success of savanna and forest trees across the savanna‐forest boundary publication-title: Oecologia – volume: 63 start-page: 119 year: 2006 end-page: 30 article-title: Successional changes in Cerrado and Cerrado/Forest Ecotonal vegetation in western São Paulo State, Brazil, 1962–2000 publication-title: Edinb. J. Bot. – volume: 137 start-page: 179 year: 1997 end-page: 203 article-title: N natural abundance in soil‐plant system publication-title: New Phytol. – volume: 20 start-page: 1231 year: 1997 end-page: 41 article-title: Waterlogging and fire impacts on nitrogen availability in a subtropical wet heathland (wallum) publication-title: Plant Cell Environ. – year: 2010 – volume: 107 start-page: 386 year: 1996 end-page: 94 article-title: N natural abundance and N use by tundra plants publication-title: Oecologia – volume: 19 start-page: 143 year: 1984 end-page: 53 article-title: Levantamento da nodulação de leguminosas florestais nativas na região sudeste do Brasil publication-title: Pesqui. Agropecu. Bras. – volume: 30 start-page: 1 year: 2000 end-page: 67 article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns publication-title: Adv. Ecol. Res. – volume: 23 start-page: 479 year: 2009 end-page: 88 article-title: Nitrogen availability patterns in white‐sand vegetations of Central Brazilian Amazon publication-title: Trees – volume: 183 start-page: 980 year: 2009 end-page: 92 article-title: Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability publication-title: New Phytol. – volume: 16 start-page: 153 year: 2001 end-page: 62 article-title: d N as an integrator of the nitrogen cycle publication-title: Trends Ecol. Evol. – volume: 101 start-page: 375 year: 1995 end-page: 82 article-title: Impacts of invading N ‐fixing species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and N natural abundance publication-title: Oecologia – volume: 159 start-page: 493 year: 2009 end-page: 503 article-title: Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna publication-title: Oecologia – volume: 62 start-page: 413 year: 1981 end-page: 30 article-title: Experimental determination of nitrogen kinetic isotope fractionation – some principles illustration for the denitrification and nitrification processes publication-title: Plant Soil – volume: 87 start-page: 1733 year: 2006 end-page: 43 article-title: Leaf traits are good predictors of plant performance across 53 rain forest species publication-title: Ecology – volume: 106 start-page: 21713 year: 2009 end-page: 16 article-title: Imprint of denitrifying bacteria on the global terrestrial biosphere publication-title: Proc. Natl. Acad. Sci. USA – volume: 72 start-page: 257 year: 2005 end-page: 82 article-title: Nitrogen additions to pristine, high‐latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession publication-title: Biogeochemistry – volume: 66 start-page: 467 year: 2009 end-page: 75 article-title: Isotopic view of vegetation and carbon and nitrogen cycles in a cerrado ecosystem, southeastern Brazil publication-title: Sci. Agri. – volume: 33 start-page: 507 year: 2002 end-page: 59 article-title: Stable isotopes in plant ecology publication-title: Annu. Rev. Ecol. Syst. – volume: 111 start-page: 237 year: 2005 end-page: 52 article-title: Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia publication-title: Agric. Ecosyst. Environ. – volume: 48 start-page: 597 year: 1982 end-page: 689 article-title: Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia publication-title: Bot. Rev. – volume: 428 start-page: 821 year: 2004 end-page: 7 article-title: The worldwide leaf economics spectrum publication-title: Nature |
| SSID | ssj0008691 |
| Score | 2.044403 |
| Snippet | Nitrogen availability and N‐cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural... Abstract Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N... Nitrogen availability and N-cycling dynamics across ecosystems play a critical role in plant functioning and species distribution. Measurements of 15N natural... |
| SourceID | proquest wiley istex |
| SourceType | Aggregation Database Publisher |
| StartPage | 974 |
| SubjectTerms | biogeography Brazil cerrado comparative ecology Dry forests Ecosystem assessment Ecosystems Flowers & plants Forest communities Forest soils Forests isotopes Leaves Nitrogen nitrogen content Savannahs savannas Seasons Soil depth stable isotope Stable isotopes tropical forest Woodlands woody plants |
| Title | Functional differences between woodland savannas and seasonally dry forests from south-eastern Brazil: Evidence from 15N natural abundance studies |
| URI | https://api.istex.fr/ark:/67375/WNG-XF8GWGJG-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1442-9993.2010.02233.x https://www.proquest.com/docview/906176445 https://www.proquest.com/docview/1501354395 https://www.proquest.com/docview/915487311 |
| Volume | 36 |
| WOSCitedRecordID | wos000297410700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1442-9993 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008691 issn: 1442-9985 databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMcttAWJC9-IpYCMhLgFreM4jrmVstkKoRVCVN2bNXYcadUqRUmLupz6CD30CfskzDjZVYvggrglsuM4yYz9s_O3h7E3PqT0t8sngJ19khnhElPrNMm9qzLQHpmiisEm9HxeLBbmy6B_orUw_f4Qmwk38ozYXpODg-t-c_IsTRBw5KDQwp5OvkOe3ErRjLMR2_r4tdz_vGmXizzGzxuuKtRNXc8fy0JipZd9dgM_r0Ns7IXK-_-z_g_YvYFF-U5vPA_ZrdA8Ynf66JQrPJrGHa1Xj9llib1fP2nI1xFVsH3hg8iLk26HFJK8AwTzBjoeTwJEzj9a8apdcaRjfLCO04IW3lHkvqvzC4ocFNqGf2jh5_LoPV8HOe1zCTXncedRvC84WrNCSV0vfXzC9svpt929ZAjnkCzT3MgEH09rIXKPgyYnRG1yndW6ToORhatMnWlQIkCuwMtQSzPxk9oUzlcIkco4LZ-yUXPchGeMG-TS2ijInYbM-8rABHQKEowOSGBqzN7G72a_91t2WGgPScGmlT2Yz-yiLGYHs08zuzdm2-sPawfn7awhrENOxGJeb1LR6-hXCjTh-LSziNFCKoQ5zMP_ksfE0aAUYszyaAib2lwfeGWpJROwZAI2moA9szvTXTp6_q8XbrO7ce47ym5esNFJexpestv-x8mya18NjvELZw4PzQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMcttAXBhW_EUj6MhLgFreM4jrmVstkFlhVCrbo3a-I40ooqrZK26nLiETjwhDwJM0521SK4IG6J4jhxPGP_7Iz9Z-yF8zH97XIRYGcfJUYUkal0HKWuKBPQDpmiDGITej7PFgvzqZcDorUw3f4Qmwk38ozQXpOD04T0b16exBESjuxDtLCrk68QKLcStCo1YFtvP-f7s03DnKVBQK-_K1OXA3v-mBciK33t80v8eZFiQzeU3_qvBbjNbvY0ync687nDrvj6LrvW6VOu8Ggc9rRe3WM_cuz_umlDvtZUwRaG92FenCJ3KEaSt4BoXkPLw4mHQPqHK142K458jCVrOS1p4S1p9_389p20g3xT8zcNfF0evuZrmdMulVBzHvYexedCQatW6FLbBT_eZ_v5eG93GvWCDtEyTo2MsHhaC5E6HDYVQlQm1Umlq9gbmRWlqRINSnhIFTjpK2lGblSZrHAlYqQyhZYP2KA-qv1Dxg2SaWUUpIWGxLnSwAh0DBKM9shgashehoqzx92mHRaaLxTDppU9mE_sIs8mB5P3Ezsdsu11zdrefVtrCOyQFDGb55ur6Hf0MwVqf3TaWgRpIRXiHKbhf0ljwnhQCjFkabCEzdtcHHolsSUTsGQCNpiAPbc74106evSvNz5j16d7H2d29m7-YZvdCDPhIQjnMRucNKf-Cbvqzk6WbfO095JfsCITvQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMct1ALiUj4rtuXDSIhb0DqO7ZhbaTdboIoqRNW9WRPHllZUaZW0qMuJR-DAE_IkjJ3sqkVwQdwSxXHieMb-2Rn7T8hL69Lwt8smgJ19kmlWJdqrNJG2qjNQFpmijmITqizz2UwfDnJAYS1Mvz_EasIteEZsr4ODu7Pa_-blWZog4fAhRAu7Ov4agXI9E1qil67vfSyODlYNcy6jgN5wVy6uB_b8MS9E1vC1L6_x51WKjd1Qcfe_FuAe2RholO705nOf3HDNA3Kr16dc4NEk7mm9eEh-FNj_9dOGdKmpgi0MHcK8aIjcCTGStANE8wY6Gk8cRNI_WdC6XVDkYyxZR8OSFtoF7b6f374H7SDXNvRtC1_nJ2_oUua0T8VESePeo_hcqMKqlXCp64MfH5GjYvJpdz8ZBB2SeSo1T7B4SjEmLQ6bKsa8lirzyqdO87yqtc8UCOZACrDcea7Hdux1XtkaMVLoSvFNstacNu4xoRrJ1GsBslKQWVtrGINKgYNWDhlMjMirWHHmrN-0w0D7OcSwKWGOy6mZFfn0ePp-avZHZHtZs2Zw387oAHZIipjNi9VV9LvwMwUad3rRGQRpxgXiHKahf0mj43iQMzYiMlrC6m2uDr2y1AQTMMEETDQBc2l2JrvhaOtfb3xObh_uFebgXflhm9yJE-ExBucJWTtvL9xTctN-OZ937bPBSX4BHOcTOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+differences+between+woodland+savannas+and+seasonally+dry+forests+from+south-eastern+Brazil%3A+Evidence+from+15N+natural+abundance+studies&rft.jtitle=Austral+ecology&rft.au=VIANI%2C+RICARDO+A.+G.&rft.au=RODRIGUES%2C+RICARDO+R.&rft.au=DAWSON%2C+TODD+E.&rft.au=OLIVEIRA%2C+RAFAEL+S.&rft.date=2011-12-01&rft.pub=Blackwell+Publishing+Asia&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=36&rft.issue=8&rft.spage=974&rft.epage=982&rft_id=info:doi/10.1111%2Fj.1442-9993.2010.02233.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XF8GWGJG_H |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon |