On real-time scheduling in Fog computing: A Reinforcement Learning algorithm with application to smart cities

Fog Computing is today a wide used paradigm that allows to distribute the computation in a geographic area. This not only makes possible to implement time-critical applications but opens the study to a series of solutions which permit to smartly organise the traffic among a set of Fog nodes, which c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) S. 187 - 193
Hauptverfasser: Mattia, Gabriele Proietti, Beraldi, Roberto
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 21.03.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fog Computing is today a wide used paradigm that allows to distribute the computation in a geographic area. This not only makes possible to implement time-critical applications but opens the study to a series of solutions which permit to smartly organise the traffic among a set of Fog nodes, which constitute the core of the Fog Computing paradigm. A typical smart city setting is subject to a continuous change of traffic conditions, a node that was saturated can become almost completely unloaded and this creates the need of designing an algorithm which allows to meet the strict deadlines of the tasks but at the same time it can choose the best scheduling policy according to the current load situation that can vary at any time. In this paper, we use a Reinforcement Learning approach to design such an algorithm starting from the power-of-random choice paradigm, used as a baseline. By showing results from our delay-based simulator, we demonstrate how such distributed reinforcement learning approach is able to maximise the rate of the tasks executed within the deadline in a way that is equal to every node, both in a fixed load condition and in a real geographic scenario.
AbstractList Fog Computing is today a wide used paradigm that allows to distribute the computation in a geographic area. This not only makes possible to implement time-critical applications but opens the study to a series of solutions which permit to smartly organise the traffic among a set of Fog nodes, which constitute the core of the Fog Computing paradigm. A typical smart city setting is subject to a continuous change of traffic conditions, a node that was saturated can become almost completely unloaded and this creates the need of designing an algorithm which allows to meet the strict deadlines of the tasks but at the same time it can choose the best scheduling policy according to the current load situation that can vary at any time. In this paper, we use a Reinforcement Learning approach to design such an algorithm starting from the power-of-random choice paradigm, used as a baseline. By showing results from our delay-based simulator, we demonstrate how such distributed reinforcement learning approach is able to maximise the rate of the tasks executed within the deadline in a way that is equal to every node, both in a fixed load condition and in a real geographic scenario.
Author Beraldi, Roberto
Mattia, Gabriele Proietti
Author_xml – sequence: 1
  givenname: Gabriele Proietti
  surname: Mattia
  fullname: Mattia, Gabriele Proietti
  email: proiettimattia@diag.uniroma1.it
  organization: Sapienza University of Rome,Department of Computer, Control and Management Engineering "Antonio Ruberti"
– sequence: 2
  givenname: Roberto
  surname: Beraldi
  fullname: Beraldi, Roberto
  email: beraldi@diag.uniroma1.it
  organization: Sapienza University of Rome,Department of Computer, Control and Management Engineering "Antonio Ruberti"
BookMark eNotkEFLAzEUhCPowVZ_gZd39bA1yW6SXW-lWCssVETxWLLJ2za4SZZsivjvrdjLDAwfwzAzchliQELuGV0wRpuHV0yr6D9j-poOcZxEWQu54JTzRaOkqpr6gsyYlKJislLimvhtgIR6KLLzCJM5oD0OLuzBBVjHPZjox2M-BY-whDd0oY_JoMeQoUWdwh-qh31MLh88fJ8U9DgOzujsYoAcYfI6ZTAuO5xuyFWvhwlvzz4nH-un99WmaLfPL6tlWzgueS5UTyusbWOUpn3NsGesN4IZaZF3zAquhDCSdlQotLpurKwkKlvysusoK7tyTu7-ex0i7sbkTht-ducHyl9wJl0l
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PerComWorkshops53856.2022.9767498
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665416475
9781665416474
EndPage 193
ExternalDocumentID 9767498
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i262t-7f04e8d9c7a0f81ef11fc51c6de2b1d52755c60b057eda89d646e7d323bb013b3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000821801200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:20 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i262t-7f04e8d9c7a0f81ef11fc51c6de2b1d52755c60b057eda89d646e7d323bb013b3
OpenAccessLink https://hdl.handle.net/11573/1631848
PageCount 7
ParticipantIDs ieee_primary_9767498
PublicationCentury 2000
PublicationDate 2022-March-21
PublicationDateYYYYMMDD 2022-03-21
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-March-21
  day: 21
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)
PublicationTitleAbbrev PerCom Workshops
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8932356
Snippet Fog Computing is today a wide used paradigm that allows to distribute the computation in a geographic area. This not only makes possible to implement...
SourceID ieee
SourceType Publisher
StartPage 187
SubjectTerms Conferences
fog computing
Pervasive computing
Processor scheduling
real-time
Real-time systems
Reinforcement learning
Scheduling
Smart cities
Title On real-time scheduling in Fog computing: A Reinforcement Learning algorithm with application to smart cities
URI https://ieeexplore.ieee.org/document/9767498
WOSCitedRecordID wos000821801200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5ziHhS2cTfvIMXwW5L2jSNNxGHB5lDVHYbbfqyFbZ2tJ1_v0lWpoIXbyEQAi95fC9f3vseIdeCagPaqfK4YtyKaksvFnrgaeQs9gMDEE6d_-NZjEbRZCLHLXK7rYVBRJd8hj07dH_5aaHWlirrS6s8I6MdsiNEuKnV2iM3jWxmf4yl8SHLMVfzYlUZT-Y2B4GxXrPuVwMVhx_Dg__tfEi634V4MN5CzBFpYd4hy5ccTKi38GxfeDCvU4MWtqgcshyGxQyUa9RgJu7gHl7RSaMqxwJCo6Y6g3gxK8qsni_BErHw4xsb6gKqpblQoJzYape8Dx_fHp68pmuCl7GQ1Z6xdIBRKpWIBzqiqCnVilMVpsgSmnImOFfhIDGBGqZxJNMwCFGkPvMTy4km_jFp50WOJwSoecDGMtBhEFETuLEEmdSCBppjoEzgeEo61lTT1UYYY9pY6ezv6XOyb0_DJnAxekHadbnGS7KrPuusKq_caX4BtVikvg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zinpS2cTf5uBFsHNJk7bxJuKYOOeQKbuNNn3ZCls72s6_3yQrU8GLtxAIgZc8vpcv730PoSufKA3asXS4pNyIagsn9FXbUcBp6DINEFad_6Pn9_vBaCQGNXSzroUBAJt8Bi0ztH_5cSaXhiq7FUZ5RgQbaJMzRturaq1tdF0JZ94OINdeZFjmYpotCu3L3GQhUNqqVv5qoWIRpLP3v733UfO7FA8P1iBzgGqQNtD8NcU62Js5pjM81u9TjRemrBwnKe5kEyxtqwY9cYfv8RtYcVRpeUBc6alOcDibZHlSTufYULH4x0c2LjNczPWVwtLKrTbRe-dx-NB1qr4JTkI9Wjra1gyCWEg_bKuAgCJESU6kFwONSMypz7n02pEO1SAOAxF7zAM_dqkbGVY0cg9RPc1SOEKY6CdsKJjyWEB06EYjoEL5hCkOTOrQ8Rg1jKnGi5U0xriy0snf05dopzt86Y17T_3nU7RrTsakc1FyhuplvoRztCU_y6TIL-zJfgFv-agF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Pervasive+Computing+and+Communications+Workshops+and+other+Affiliated+Events+%28PerCom+Workshops%29&rft.atitle=On+real-time+scheduling+in+Fog+computing%3A+A+Reinforcement+Learning+algorithm+with+application+to+smart+cities&rft.au=Mattia%2C+Gabriele+Proietti&rft.au=Beraldi%2C+Roberto&rft.date=2022-03-21&rft.pub=IEEE&rft.spage=187&rft.epage=193&rft_id=info:doi/10.1109%2FPerComWorkshops53856.2022.9767498&rft.externalDocID=9767498