A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch

Summary This paper presents a novel multi‐objective evolutionary algorithm, namely chemical reaction optimization (CRO) algorithm for solving dynamic economic emission dispatch (DEED) problem of power systems. The DEED problem is a non‐linear, non‐convex, multi‐dimensional, and highly constrained mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions on electrical energy systems Jg. 26; H. 1; S. 49 - 78
Hauptverfasser: Roy, Provas Kumar, Bhui, Sudipta
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Blackwell Publishing Ltd 01.01.2016
John Wiley & Sons, Inc
Schlagworte:
ISSN:2050-7038, 2050-7038
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This paper presents a novel multi‐objective evolutionary algorithm, namely chemical reaction optimization (CRO) algorithm for solving dynamic economic emission dispatch (DEED) problem of power systems. The DEED problem is a non‐linear, non‐convex, multi‐dimensional, and highly constrained multi‐objective optimization problem. It has no unique optimal solution with respect to all criteria because it involves multiple and often conflicting optimization criteria. In order to improve the convergence speed and quality of the solutions attained by CRO, it is combined with differential evolution to escape from local minima solutions. This hybrid differential evolution‐based CRO (HCRO) methodology determines the feasible optimal solution of the non‐linear DEED problem. To demonstrate the superiority of the proposed CRO and HCRO methods in solving non‐convex, non‐linear, and constrained DEED problem, the proposed frameworks are implemented on 10‐unit and 30‐unit test systems. It is found from the simulation results that HCRO exhibits significantly better performance in terms of solution quality and convergence speed for all the cases compared with CRO algorithm. Furthermore, the proposed HCRO algorithm is superior to most of the existing algorithms available in the literature. Copyright © 2015 John Wiley & Sons, Ltd.
Bibliographie:ArticleID:ETEP2066
istex:5904154BA85AF8E5932BEDF9B88EE83F05D1E0DF
ark:/67375/WNG-5484RBVQ-8
Current address: Department of Electrical Engineering, Jalpaiguri Government Engineering College, Jalpaiguri, West Bengal, India.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-7038
2050-7038
DOI:10.1002/etep.2066