Heart Failure diagnosis based on deep learning techniques

The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are implemented, where stacked Restricted Boltzman Machines (RBMs) and stacked Autoencoders (AEs) are used to pre-train Deep Belief Networks (DBN) a...

Full description

Saved in:
Bibliographic Details
Published in:2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2021; pp. 1757 - 1760
Main Authors: Papadopoulos, Theofilos G., Plati, Daphni, Tripoliti, Evanthia E., Goletsis, Yorgos, Naka, Katerina K., Rammos, Aidonis, Bechlioulis, Aris, Watson, Chris, McDonald, Kenneth, Ledwidge, Mark, Pharithi, Rebabonye, Gallagher, Joseph, Fotiadis, Dimitrios I.
Format: Conference Proceeding Journal Article
Language:English
Published: United States IEEE 01.11.2021
Subjects:
ISSN:2694-0604, 2694-0604
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are implemented, where stacked Restricted Boltzman Machines (RBMs) and stacked Autoencoders (AEs) are used to pre-train Deep Belief Networks (DBN) and Deep Neural Networks (DNN). The data is provided by the University College Dublin and the 2nd Department of Cardiology from the University Hospital of Ioannina. The features recorded are grouped into: general demographic information, physical examination, classical cardiovascular risk factors, personal history of cardiovascular disease, symptoms, medications, echocardiographic features, laboratory findings, lifestyle/habits and other diseases. The total number of subjects utilized is 422. The deep learning methods provide quite high results with the Autoencoder plus DNN approach to demonstrate accuracy 91.71%, sensitivity 90.74%, specificity 92.31% and f-score 89.36%.
AbstractList The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are implemented, where stacked Restricted Boltzman Machines (RBMs) and stacked Autoencoders (AEs) are used to pre-train Deep Belief Networks (DBN) and Deep Neural Networks (DNN). The data is provided by the University College Dublin and the 2nd Department of Cardiology from the University Hospital of Ioannina. The features recorded are grouped into: general demographic information, physical examination, classical cardiovascular risk factors, personal history of cardiovascular disease, symptoms, medications, echocardiographic features, laboratory findings, lifestyle/habits and other diseases. The total number of subjects utilized is 422. The deep learning methods provide quite high results with the Autoencoder plus DNN approach to demonstrate accuracy 91.71%, sensitivity 90.74%, specificity 92.31% and f-score 89.36%.
The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are implemented, where stacked Restricted Boltzman Machines (RBMs) and stacked Autoencoders (AEs) are used to pre-train Deep Belief Networks (DBN) and Deep Neural Networks (DNN). The data is provided by the University College Dublin and the 2nd Department of Cardiology from the University Hospital of Ioannina. The features recorded are grouped into: general demographic information, physical examination, classical cardiovascular risk factors, personal history of cardiovascular disease, symptoms, medications, echocardiographic features, laboratory findings, lifestyle/habits and other diseases. The total number of subjects utilized is 422. The deep learning methods provide quite high results with the Autoencoder plus DNN approach to demonstrate accuracy 91.71%, sensitivity 90.74%, specificity 92.31% and f-score 89.36%.The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are implemented, where stacked Restricted Boltzman Machines (RBMs) and stacked Autoencoders (AEs) are used to pre-train Deep Belief Networks (DBN) and Deep Neural Networks (DNN). The data is provided by the University College Dublin and the 2nd Department of Cardiology from the University Hospital of Ioannina. The features recorded are grouped into: general demographic information, physical examination, classical cardiovascular risk factors, personal history of cardiovascular disease, symptoms, medications, echocardiographic features, laboratory findings, lifestyle/habits and other diseases. The total number of subjects utilized is 422. The deep learning methods provide quite high results with the Autoencoder plus DNN approach to demonstrate accuracy 91.71%, sensitivity 90.74%, specificity 92.31% and f-score 89.36%.
Author Ledwidge, Mark
Gallagher, Joseph
Plati, Daphni
Watson, Chris
McDonald, Kenneth
Naka, Katerina K.
Goletsis, Yorgos
Fotiadis, Dimitrios I.
Pharithi, Rebabonye
Rammos, Aidonis
Tripoliti, Evanthia E.
Papadopoulos, Theofilos G.
Bechlioulis, Aris
Author_xml – sequence: 1
  givenname: Theofilos G.
  surname: Papadopoulos
  fullname: Papadopoulos, Theofilos G.
  email: tpapado2011@gmail.com
  organization: University of Ioannina,Unit of Medical Technology and Intelligent Information Systems,Ioannina,Greece
– sequence: 2
  givenname: Daphni
  surname: Plati
  fullname: Plati, Daphni
  email: daphni.plati@gmail.com
  organization: Institute of Molecular Biology and Biotechnology, FORTH,Department of Biomedical Research,Ioannina,Greece
– sequence: 3
  givenname: Evanthia E.
  surname: Tripoliti
  fullname: Tripoliti, Evanthia E.
  email: etripoliti@gmail.com
  organization: Institute of Molecular Biology and Biotechnology, FORTH,Department of Biomedical Research,Ioannina,Greece
– sequence: 4
  givenname: Yorgos
  surname: Goletsis
  fullname: Goletsis, Yorgos
  email: goletsis@uoi.gr
  organization: University of Ioannina,Department of Economics,Ioannina,Greece
– sequence: 5
  givenname: Katerina K.
  surname: Naka
  fullname: Naka, Katerina K.
  email: drkknaka@gmail.com
  organization: University of Ioannina,Medical School,2nd Department of Cardiology,Ioannina,Greece
– sequence: 6
  givenname: Aidonis
  surname: Rammos
  fullname: Rammos, Aidonis
  email: aidrammos@yahoo.gr
  organization: University of Ioannina,Medical School,2nd Department of Cardiology,Ioannina,Greece
– sequence: 7
  givenname: Aris
  surname: Bechlioulis
  fullname: Bechlioulis, Aris
  email: md02798@yahoo.gr
  organization: University of Ioannina,Medical School,2nd Department of Cardiology,Ioannina,Greece
– sequence: 8
  givenname: Chris
  surname: Watson
  fullname: Watson, Chris
  email: chris.watson@qub.ac.uk
  organization: National University of Ireland,University College Dublin,Belfield,Dublin,Ireland
– sequence: 9
  givenname: Kenneth
  surname: McDonald
  fullname: McDonald, Kenneth
  email: kenneth.mcdonald@ucd.ie
  organization: National University of Ireland,University College Dublin,Belfield,Dublin,Ireland
– sequence: 10
  givenname: Mark
  surname: Ledwidge
  fullname: Ledwidge, Mark
  email: mark.ledwidge@ucd.ie
  organization: National University of Ireland,University College Dublin,Belfield,Dublin,Ireland
– sequence: 11
  givenname: Rebabonye
  surname: Pharithi
  fullname: Pharithi, Rebabonye
  email: rpharithi@gmail.com
  organization: National University of Ireland,University College Dublin,Belfield,Dublin,Ireland
– sequence: 12
  givenname: Joseph
  surname: Gallagher
  fullname: Gallagher, Joseph
  email: jgallagher@ucd.ie
  organization: National University of Ireland,University College Dublin,Belfield,Dublin,Ireland
– sequence: 13
  givenname: Dimitrios I.
  surname: Fotiadis
  fullname: Fotiadis, Dimitrios I.
  email: fotiadis@cc.uoi.gr
  organization: University of Ioannina,Unit of Medical Technology and Intelligent Information Systems,Ioannina,Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34891627$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhA0qog_6C5AqH7mk-BU7e4SqpUhFXEDiFjn1philTomTA_-eoBbEaUfaT7M7MyaDUAckZMbZnHMGt8un-4XSXKu5YILPQUumGJyRMTci45wbeDsnI6FBJUwzNfinh2Qa4wdjTBgGhqlLMpQqA66FGRFYo21aurK-6hqkzttdqKOPtLARHa0DdYgHWvVU8GFHW9y-B__ZYbwiF6WtIk5Pc0JeV8uXxTrZPD88Lu42iRcptIkri1RmunQZFIicK-NEqop0mwEYRFn2TxUGGJe8D6UkKiaL0lldakidLOWE3Bx9D039c7fN9z5usapswLqLudAMlBZpBj06O6FdsUeXHxq_t81X_hu3B66PgEfEv_WpTPkNQGtkuw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/EMBC46164.2021.9630409
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISBN 172811179X
9781728111797
EISSN 2694-0604
EndPage 1760
ExternalDocumentID 34891627
9630409
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 6IE
6IF
6IG
6IH
6IL
6IN
AAWTH
ABLEC
ABQGA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-i259t-dfb5386fd89bee1147d254b5c8997ee3f709b79013196343e403bfda6f695d3f3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760910501178&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2694-0604
IngestDate Thu Oct 02 15:21:55 EDT 2025
Thu Jan 02 22:56:06 EST 2025
Wed Aug 27 05:09:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i259t-dfb5386fd89bee1147d254b5c8997ee3f709b79013196343e403bfda6f695d3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34891627
PQID 2609462589
PQPubID 23479
PageCount 4
ParticipantIDs ieee_primary_9630409
pubmed_primary_34891627
proquest_miscellaneous_2609462589
PublicationCentury 2000
PublicationDate 2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002709704
ssib053545923
ssib042469959
ssib061542107
Score 2.1833808
Snippet The aim of the study is to address the heart failure (HF) diagnosis with the application of deep learning approaches. Seven deep learning architectures are...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1757
SubjectTerms Algorithms
Biological system modeling
Deep Learning
Electrocardiography
Heart
Heart Failure - diagnosis
History
Hospitals
Humans
Neural Networks, Computer
Sensitivity
Title Heart Failure diagnosis based on deep learning techniques
URI https://ieeexplore.ieee.org/document/9630409
https://www.ncbi.nlm.nih.gov/pubmed/34891627
https://www.proquest.com/docview/2609462589
Volume 2021
WOSCitedRecordID wos000760910501178&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFG_m4sGTmk2dH0tNPMoGtLT06rJlB7fsoGY3QunD4IEtg_n3-woMPejBC-EAL-3rD15_fV-EPBjGIfDwQ-KaJw5nXDvak4ljcyhNIGLPr84h357lchmu12rVIY9tLgwAVMFnMLK3lS_fbJK9PSobI1gQc-qIHEkp6lytA3a4jzzvR52UgOHW4EANPioHm6uky5skYc9V4-niacIF0gVkib43aoQ3XVb-3nBWhmd2-r8hn5H-dwYfXbW26Zx0IO8RNUdYl3QWZzYWnZo6yi4rqDVlhm5yagC2tGkk8U7b-q5Fn7zOpi-TudO0TnAy5DOlY1KNfzKRmlBpAOQ80iAT1EGC9EoCsBS1oaWyxXZwhJwBd5lOTSxSoQLDUnZBuvkmhytCUwEe-CxOWAgchYZKGA4MiUgaxL4WA9Kz0462dXWMqJnxgNwfFBghYq0bIs5hsy8iZFCKI-0K8ZnLWrPty4yHuF_15fXvQm_IiV2rOhfwlnTL3R7uyHHyWWbFboiwWId4Xa4WwwocX3n6st4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7UaqInNa1an2viUVpgl8debdrU2DY9VNMbYdnB4AGaQv39zgJFD3rwxgEmu8MHM9_Oi5AHxTg4Fn5IXPLI4IxLQ1peZOgaSuW4oWWX55BvU28-91crsWiRx6YWBgDK5DPo68sylq-yaKuPygYIFsSc2CP7enKWqKq1dujhNjK9H51SHIbOwY4cfJQhNlN4Jq_LhC1TDEazpyF3kTAgT7Stfi2-nrPyt8tZmp7x8f8WfUK63zV8dNFYp1PSgrRDxASBXdBxmOhsdKqqPLskp9qYKZqlVAGsaT1K4p02HV7zLnkdj5bDiVEPTzASZDSFoWKJ_zI3Vr6QAMh6PIVcUDoREiwPgMWoDekJ3W4HV8gZcJPJWIVu7ApHsZidkXaapXBBaOyCBTYLI-YDR6G-cBUHhlQkdkJbuj3S0dsO1lV_jKDecY_c7xQYIGZ1ICJMIdvmAXIowZF4-XjPeaXZ5mHGffRYbe_yd6F35HCynE2D6fP85Yoc6fdWVQZek3ax2cINOYg-iyTf3Jbg-AKalbQ5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+43rd+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Heart+Failure+diagnosis+based+on+deep+learning+techniques&rft.au=Papadopoulos%2C+Theofilos+G.&rft.au=Plati%2C+Daphni&rft.au=Tripoliti%2C+Evanthia+E.&rft.au=Goletsis%2C+Yorgos&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1757&rft.epage=1760&rft_id=info:doi/10.1109%2FEMBC46164.2021.9630409&rft.externalDocID=9630409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-0604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-0604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-0604&client=summon