Estimating the Center of Rotation of Tomographic Imaging Systems with a Limited Number of Projections

For a tomographic imaging system, image reconstruction quality is dependent on the accurate determination of coordinates for the true center of rotation (COR). A significant COR offset error may introduce ringing, streaking, or other artifacts, while smaller error in determining COR may blur the rec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Ročník 2021; s. 3157 - 3160
Hlavní autoři: Zhou, Huanyi, Reeves, Stanley J., Panizzi, Peter R.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.11.2021
Témata:
ISSN:2694-0604, 2694-0604
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For a tomographic imaging system, image reconstruction quality is dependent on the accurate determination of coordinates for the true center of rotation (COR). A significant COR offset error may introduce ringing, streaking, or other artifacts, while smaller error in determining COR may blur the reconstructed image. Well known COR correction techniques including image registration, center of mass calculation, or reconstruction evaluation work well under certain conditions. However, many of these methods do not consider various real-world cases such as a tilted sensor or non-parallel projections. Furthermore, a limited number of projections introduces stripe artifacts into the image reconstruction that interfere with many of these classic COR correction techniques. In this paper, we propose a revised variance-based algorithm to find the correct COR position automatically prior to tomographic reconstruction. The algorithm was tested on both simulated phantoms and acquired datasets, and our results show improved reconstruction accuracy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2694-0604
2694-0604
DOI:10.1109/EMBC46164.2021.9629527