Deep Learning for Accurate Indoor Human Tracking with a mm-Wave Radar
We address the use of backscattered mm-wave radio signals to track humans as they move within indoor environments. The common approach in the literature leverages the extended Kalman filter (EKF) method, which however undergoes a severe performance degradation when the system evolution model is high...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE National Radar Conference (1996) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
21.09.2020
|
| Témata: | |
| ISSN: | 2375-5318 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We address the use of backscattered mm-wave radio signals to track humans as they move within indoor environments. The common approach in the literature leverages the extended Kalman filter (EKF) method, which however undergoes a severe performance degradation when the system evolution model is highly non-linear or presents long-term time dependencies among the system states. In this work, we propose an original model-free tracking procedure based on denoising autoencoders and sequence-to-sequence neural networks, showing its superior performance with respect to state-of-the-art methods. Our architecture can be trained in either a supervised or unsupervised manner, trading tracking accuracy for flexibility. The proposed system is tested on our own measurements, obtained with a 77 GHz radar on single and multiple subjects simultaneously moving in an indoor space. The results are compared against the ground truth trajectories from a motion tracking system, obtaining average tracking errors as low as 12 cm. |
|---|---|
| AbstractList | We address the use of backscattered mm-wave radio signals to track humans as they move within indoor environments. The common approach in the literature leverages the extended Kalman filter (EKF) method, which however undergoes a severe performance degradation when the system evolution model is highly non-linear or presents long-term time dependencies among the system states. In this work, we propose an original model-free tracking procedure based on denoising autoencoders and sequence-to-sequence neural networks, showing its superior performance with respect to state-of-the-art methods. Our architecture can be trained in either a supervised or unsupervised manner, trading tracking accuracy for flexibility. The proposed system is tested on our own measurements, obtained with a 77 GHz radar on single and multiple subjects simultaneously moving in an indoor space. The results are compared against the ground truth trajectories from a motion tracking system, obtaining average tracking errors as low as 12 cm. |
| Author | Solimini, Domenico Rossi, Michele Pegoraro, Jacopo Matteo, Federico Bashirov, Enver Meneghello, Francesca |
| Author_xml | – sequence: 1 givenname: Jacopo surname: Pegoraro fullname: Pegoraro, Jacopo email: pegoraroja@dei.unipd.it organization: University of Padova,Department of Information Engineering – sequence: 2 givenname: Domenico surname: Solimini fullname: Solimini, Domenico organization: University of Padova,Department of Mathematics – sequence: 3 givenname: Federico surname: Matteo fullname: Matteo, Federico organization: University of Padova,Department of Mathematics – sequence: 4 givenname: Enver surname: Bashirov fullname: Bashirov, Enver organization: University of Padova,Department of Information Engineering – sequence: 5 givenname: Francesca surname: Meneghello fullname: Meneghello, Francesca organization: University of Padova,Department of Information Engineering – sequence: 6 givenname: Michele surname: Rossi fullname: Rossi, Michele organization: University of Padova,Department of Information Engineering |
| BookMark | eNotj01Lw0AYhFdRsK39BV724jHx3d3s17HEagsBQSoey2bzrkbNpmxSxX9v1Z6GGR6GmSk5i31EQq4Z5IyBvXl0jUtlHwOHQthC5xw45JYrVQCckLnVhmlumLEFh1My4ULLTApmLsh0GN4ApDhEE7K8RdzRCl2KbXyhoU904f0-uRHpOjb9wa_2nYt0k5x__0W-2vGVOtp12bP7RPo35JKcB_cx4PyoM_J0t9yUq6x6uF-XiypruTRj5kyodWNUwQBANVYwH3yNUjqllPY-mIDGIzdCoyyk4iZYJZnStUAjbBAzcvXf2yLidpfazqXv7fG1-AHQzE-A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/RadarConf2043947.2020.9266400 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728189420 172818942X |
| EISSN | 2375-5318 |
| EndPage | 6 |
| ExternalDocumentID | 9266400 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: MIUR (Italian Ministry of Education, University and Research) grantid: 232/2016 funderid: 10.13039/501100003407 |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i258t-a8fb7d86410006d931cfcbe55a6667ccf8fe8ce2837e545628f965167b3e839f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612224900092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:33:59 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i258t-a8fb7d86410006d931cfcbe55a6667ccf8fe8ce2837e545628f965167b3e839f3 |
| OpenAccessLink | https://doi.org/10.1109/RadarConf2043947.2020.9266400 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9266400 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Sept.-21 |
| PublicationDateYYYYMMDD | 2020-09-21 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-Sept.-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the IEEE National Radar Conference (1996) |
| PublicationTitleAbbrev | RadarConf20 |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0053237 |
| Score | 2.2544036 |
| Snippet | We address the use of backscattered mm-wave radio signals to track humans as they move within indoor environments. The common approach in the literature... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | denoising autoencoders Extraterrestrial measurements human tracking indoor sensing mm-wave radar Neural networks Noise reduction Radar tracking sequence-to-sequence autoencoders Spaceborne radar Target tracking Trajectory |
| Title | Deep Learning for Accurate Indoor Human Tracking with a mm-Wave Radar |
| URI | https://ieeexplore.ieee.org/document/9266400 |
| WOSCitedRecordID | wos000612224900092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FUKw8GgRb3mAjbSJEz8yIqACCVUV4tGtiu0z6tC0Km1_P7YbCkgsbI4Hy7nYvrsv_r4DuJDcMC5sHFmeiihTmEU5tZnbeLFNvTpJHGosvT6KXk8OBnm_BldrLgwihstn2PbN8C_fTPTCQ2Wd3HkTt-bqUBeCr7haX6cuS2kqNuGy0tDsPBUuDfekuRX3U7hMkMbtaoBflVSCI-nu_G8Ku9D6ZuSR_trX7EENy33Y_iEm2IS7W8QpqfRS34kLRsm11gsvBUEeSjNxzwGxJ849aQ-QE4_BkoKMx9FbsUQSXqYFL92755v7qCqSEI0ok_OokFYJI3nmgXpu8jTRVitkrHCJidDaSotSoxe5QR8tUWlzzhIuVIouOLLpATTKSYmHQOLCMq6os1Qeu6xNKZMJbrjEXCXuYGNH0PQGGU5XOhjDyhbHf3efwJa3ub9bQZNTaMxnCzyDDb2cjz5m5-HjfQIX-Zix |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU8IwEN5BdHxcfIDj2xz0ZqFNm0ePjsLAiAzjoHJjmnTjcKAwCPx-k1JfM168pTlk0m2S3f2a71uAK8lTxoXxPcND4UUKIy-mJrIbzzehUyfx8xpLLx3R7crBIO6V4OaLC4OI-eUzrLlm_i8_neiFg8rqsfUmds2twTqLIuqv2Fqf5y4LaSg24bpQ0aw_JTYRd7S5FftT2FyQ-rViiF-1VHJX0tz93yT2oPrNySO9L2-zDyXMDmDnh5xgBRr3iFNSKKa-ERuOklutF04MgrSzdGKfc8yeWAelHUROHApLEjIee6_JEkn-MlV4bjb6dy2vKJPgjSiTcy-RRolU8shB9TyNw0AbrZCxxKYmQmsjDUqNTuYGXbxEpYk5C7hQIdrwyISHUM4mGR4B8RPDuKLWUrFv8zal0kjwlEuMVWCPNnYMFWeQ4XSlhDEsbHHyd_clbLX6j51hp919OIVtZ39304IGZ1CezxZ4Dht6OR-9zy7yD_kBOsqb-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+National+Radar+Conference+%281996%29&rft.atitle=Deep+Learning+for+Accurate+Indoor+Human+Tracking+with+a+mm-Wave+Radar&rft.au=Pegoraro%2C+Jacopo&rft.au=Solimini%2C+Domenico&rft.au=Matteo%2C+Federico&rft.au=Bashirov%2C+Enver&rft.date=2020-09-21&rft.pub=IEEE&rft.eissn=2375-5318&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FRadarConf2043947.2020.9266400&rft.externalDocID=9266400 |