Explainable Human-Machine Teaming using Model Checking and Interpretable Machine Learning
The human-machine teaming paradigm promotes tight teamwork between humans and autonomous machines that collaborate in the same physical space. This paradigm is increasingly widespread in critical domains, such as healthcare and domestic assistance. These systems are expected to build a certain level...
Uloženo v:
| Vydáno v: | FME Workshop on Formal Methods in Software Engineering (Online) s. 18 - 28 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2023
|
| Témata: | |
| ISSN: | 2575-5099 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The human-machine teaming paradigm promotes tight teamwork between humans and autonomous machines that collaborate in the same physical space. This paradigm is increasingly widespread in critical domains, such as healthcare and domestic assistance. These systems are expected to build a certain level of trust by enforcing dependability and exhibiting interpretable behavior. However, trustworthiness is negatively affected by the black-box nature of these systems, which typically make fully autonomous decisions that may be confusing for humans or cause hazards in critical domains. We present the EASE approach, whose goal is to build better trust in human-machine teaming leveraging statistical model checking and model-agnostic interpretable machine learning. We illustrate EASE through an example in healthcare featuring an infinite (dense) space of human-machine uncertain factors, such as diverse physical and physiological characteristics of the agents involved in the teamwork. Our evaluation demonstrates the suitability and cost-effectiveness of EASE in explaining dependability properties in human-machine teaming. |
|---|---|
| AbstractList | The human-machine teaming paradigm promotes tight teamwork between humans and autonomous machines that collaborate in the same physical space. This paradigm is increasingly widespread in critical domains, such as healthcare and domestic assistance. These systems are expected to build a certain level of trust by enforcing dependability and exhibiting interpretable behavior. However, trustworthiness is negatively affected by the black-box nature of these systems, which typically make fully autonomous decisions that may be confusing for humans or cause hazards in critical domains. We present the EASE approach, whose goal is to build better trust in human-machine teaming leveraging statistical model checking and model-agnostic interpretable machine learning. We illustrate EASE through an example in healthcare featuring an infinite (dense) space of human-machine uncertain factors, such as diverse physical and physiological characteristics of the agents involved in the teamwork. Our evaluation demonstrates the suitability and cost-effectiveness of EASE in explaining dependability properties in human-machine teaming. |
| Author | Bersani, Marcello M. Lestingi, Livia Mirandola, Raffaela Camilli, Matteo Rossi, Matteo |
| Author_xml | – sequence: 1 givenname: Marcello M. surname: Bersani fullname: Bersani, Marcello M. email: Marcello.Bersani@polimi.it organization: Politecnico di Milano,Department of Electronics, Information and Bioengineering (DEIB),Italy – sequence: 2 givenname: Matteo surname: Camilli fullname: Camilli, Matteo email: Matteo.Camilli@polimi.it organization: Politecnico di Milano,Department of Electronics, Information and Bioengineering (DEIB),Italy – sequence: 3 givenname: Livia surname: Lestingi fullname: Lestingi, Livia email: Livia.Lestingi@polimi.it organization: Politecnico di Milano,Department of Electronics, Information and Bioengineering (DEIB),Italy – sequence: 4 givenname: Raffaela surname: Mirandola fullname: Mirandola, Raffaela email: Raffaela.Mirandola@polimi.it organization: Politecnico di Milano,Department of Electronics, Information and Bioengineering (DEIB),Italy – sequence: 5 givenname: Matteo surname: Rossi fullname: Rossi, Matteo email: matteo.rossi@polimi.it organization: Politecnico di Milano,Department of Mechanical Engineering (DMec),Italy |
| BookMark | eNo1jMtOwzAURA0CiVL6ByzCB6Rc27mJvURVSiulYkFZsKoc-5oaErdKUgn-npbHZkYjnTPX7CLuIjF2x2HKOej7-a5rTROeS1S6UFMBQk4BgMMZm-hCK4kgucilOmcjgQWmCFpfsUnfvx8xyTUA4oi9lp_7xoRo6oaSxaE1MV0Zuw2RkjWZNsS35NCfcrVz1CSzLdmP0zTRJcs4ULfvaPiR_7WKTBePyA279KbpafLXY_YyL9ezRVo9PS5nD1UaBOKQChIqLwRJcKiIwHnE2tuceE0g0QieeZFJD2Bt5hTU0lltc6sF5d64TI7Z7e9vIKLNvgut6b42HHieFZLLbxGyWFw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/FormaliSE58978.2023.00010 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350312638 |
| EISSN | 2575-5099 |
| EndPage | 28 |
| ExternalDocumentID | 10164731 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i255t-2e28672e30d58ee0df55bfc6e1be035a214f243f00cc4d80b3dc9c6c92e6fad43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001021640100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:19:18 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i255t-2e28672e30d58ee0df55bfc6e1be035a214f243f00cc4d80b3dc9c6c92e6fad43 |
| OpenAccessLink | https://hdl.handle.net/11311/1243584 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10164731 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May |
| PublicationDecade | 2020 |
| PublicationTitle | FME Workshop on Formal Methods in Software Engineering (Online) |
| PublicationTitleAbbrev | FORMALISE |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003190055 |
| Score | 1.8595704 |
| Snippet | The human-machine teaming paradigm promotes tight teamwork between humans and autonomous machines that collaborate in the same physical space. This paradigm is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 18 |
| SubjectTerms | formal analysis Human-machine teaming interpretable machine learning statistical model checking |
| Title | Explainable Human-Machine Teaming using Model Checking and Interpretable Machine Learning |
| URI | https://ieeexplore.ieee.org/document/10164731 |
| WOSCitedRecordID | wos001021640100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UGOMJPzB-pyZeC13Xrd2ZQDwoIRENnkjXviEJDoLg329fGeDFg7dly0uWvn7svf0-CHnQvuYyLtLMgVJMFlKxPHZ-MzQiTtJcchMU-N6eVK-nh8OsX5HVAxcGAAL4DJp4Gf7lu5ldYausFQX1K2RN7yuVrsla24aKn0soKHVI7isdzVYXv_qmk5dOon2t1ESjcJQrRLLsLyeVcJB06_98hWPS2FHyaH972JyQPShPSX3jyUCrJXpG3hFUVzGiaOjQs-eAlwQ6APPpYylC3ccUTdCmtP0BFpvl1JSO7gCIGLwJqxRYxw3y2u0M2o-ssk9gE18nLJkAoVMlIOYu0QDcFUmSFzaFKAceJ0ZEshAyLji3VjrNfY5sZlObCUgL42R8TmrlrIQLQmOruFVCGL8hyEhr_9TPQF9cFoabzGWXpIFDNZqvFTJGm1G6-uP-NTnCbKyBgzektlys4JYc2O_l5GtxF_L6A5JopNQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8xaNQTfmD8tiZeB13Xbd2ZQDACIRENnkjXvuESHAbBv9-2DPDiwduy5SVLXz_23n4fAA_C1FxS-8LTGMcez3jspYE2m6FkQRilnEqnwPfajft9MRolg5Ks7rgwiOjAZ1i3l-5fvp6ppW2VNXynfmVZ07sh54yu6FqbloqZTVZSah_uSyXNRtt-903z51YoTLVUt1bhVrDQ0mV_eam4o6Rd_edLHEFtS8ojg81xcww7WJxAde3KQMpFegpvFlZXcqKI69F7PYeYRDJE-WFiiQW7T4i1QZuS5jsq2y4nstBkC0G0weuwUoN1UoOXdmvY7HilgYKXm0ph4TFkIooZBlSHApHqLAzTTEXop0iDUDKfZ4wHGaVKcS2oyZJKVKQShlEmNQ_OoFLMCjwHEqiYqpgxabYE7gthnpo5aMrLTFKZ6OQCanaoxp8rjYzxepQu_7h_BwedYa877j72n67g0GZmBSO8hspivsQb2FPfi_xrfuty_ANSL6gb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=FME+Workshop+on+Formal+Methods+in+Software+Engineering+%28Online%29&rft.atitle=Explainable+Human-Machine+Teaming+using+Model+Checking+and+Interpretable+Machine+Learning&rft.au=Bersani%2C+Marcello+M.&rft.au=Camilli%2C+Matteo&rft.au=Lestingi%2C+Livia&rft.au=Mirandola%2C+Raffaela&rft.date=2023-05-01&rft.pub=IEEE&rft.eissn=2575-5099&rft.spage=18&rft.epage=28&rft_id=info:doi/10.1109%2FFormaliSE58978.2023.00010&rft.externalDocID=10164731 |