Towards Long-term Non-invasive Monitoring for Epilepsy via Wearable EEG Devices
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classification approaches (Support Vector Machines, Random For...
Saved in:
| Published in: | 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) pp. 01 - 04 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
07.10.2021
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classification approaches (Support Vector Machines, Random Forest, Extra Trees, AdaBoost) and different pre/post-processing techniques to maximize sensitivity while guaranteeing no false alarms. We analyze global and subject-specific approaches, considering all 23-electrodes or only 4 temporal channels. For 8 s window size and subject-specific approach, we report zero false positives and 100% sensitivity. These algorithms are parallelized and optimized for a parallel ultra-low power (PULP) platform, enabling 300h of continuous monitoring on a 300 mAh battery, in a wearable form factor and power budget. These results pave the way for the implementation of affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patient and caregiver requirements. |
|---|---|
| AbstractList | We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classification approaches (Support Vector Machines, Random Forest, Extra Trees, AdaBoost) and different pre/post-processing techniques to maximize sensitivity while guaranteeing no false alarms. We analyze global and subject-specific approaches, considering all 23-electrodes or only 4 temporal channels. For 8 s window size and subject-specific approach, we report zero false positives and 100% sensitivity. These algorithms are parallelized and optimized for a parallel ultra-low power (PULP) platform, enabling 300h of continuous monitoring on a 300 mAh battery, in a wearable form factor and power budget. These results pave the way for the implementation of affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patient and caregiver requirements. |
| Author | Wang, Xiaying Tabanelli, Enrico Benatti, Simone Benini, Luca Ryvlin, Philippe Ingolfsson, Thorir Mar Cossettini, Andrea Tagliavini, Giuseppe |
| Author_xml | – sequence: 1 givenname: Thorir Mar surname: Ingolfsson fullname: Ingolfsson, Thorir Mar email: thoriri@iis.ee.ethz.ch organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 2 givenname: Andrea surname: Cossettini fullname: Cossettini, Andrea organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 3 givenname: Xiaying surname: Wang fullname: Wang, Xiaying organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 4 givenname: Enrico surname: Tabanelli fullname: Tabanelli, Enrico organization: University of Bologna,DEI,Bologna,Italy – sequence: 5 givenname: Giuseppe surname: Tagliavini fullname: Tagliavini, Giuseppe organization: University of Bologna,DEI,Bologna,Italy – sequence: 6 givenname: Philippe surname: Ryvlin fullname: Ryvlin, Philippe organization: Lausanne University Hospital (CHUV),Switzerland – sequence: 7 givenname: Luca surname: Benini fullname: Benini, Luca organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 8 givenname: Simone surname: Benatti fullname: Benatti, Simone organization: University of Bologna,DEI,Bologna,Italy |
| BookMark | eNotj8tOwzAUBY0EC1r4Ajb-gQQ_bh5elhBapEAXFLGs7Pi6spTalRMF9e-pRBdHM6uRzoLchhiQEMpZzjlTzy8-NqsvUEqIXDDBc1UCKFA3ZMErUV_GoLon21381cmOtIvhkE2YjvQzhsyHWY9-RvoRg59i8uFAXUy0PfkBT-OZzl7TH9RJmwFp267pK86-x_GB3Dk9jPh45ZJ8v7W7ZpN12_V7s-oyLwo5Za4sBSu0UT1ajmAK17OLFNYaVlnQSlmwfVXa2piqBGklE-h4oQF6J7GWS_L03_WIuD8lf9TpvL9-lH88Wk3o |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BioCAS49922.2021.9644949 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728172047 9781728172040 |
| EndPage | 04 |
| ExternalDocumentID | 9644949 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Swiss National Science Foundation (Project PEDESITE) grantid: agreement funderid: 10.13039/501100001711 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i253t-f66205ab9ced1e4b5fc0d1e5ddb07d4a99d4dc76d8bb7643d302ef15a44cf3e83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000837980700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:53 EDT 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i253t-f66205ab9ced1e4b5fc0d1e5ddb07d4a99d4dc76d8bb7643d302ef15a44cf3e83 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9644949 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9644949 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Oct.-7 |
| PublicationDateYYYYMMDD | 2021-10-07 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-7 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) |
| PublicationTitleAbbrev | BIOCAS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9240731 |
| Snippet | We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 01 |
| SubjectTerms | deep learning Electroencephalography Epilepsy healthcare Inference algorithms machine learning Prediction algorithms Sensitivity smart edge computing Support vector machines time series classification Wearable computers |
| Title | Towards Long-term Non-invasive Monitoring for Epilepsy via Wearable EEG Devices |
| URI | https://ieeexplore.ieee.org/document/9644949 |
| WOSCitedRecordID | wos000837980700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH604sGTSivu5ODRtLNkkslR61QPpRas2lvJKnOZKd3Af2-S1orgxVvIQuAlb0nyvS8ANzbnQjrLj3XCIkyMSLH0dHcsVjxXiuY08Gy_DdhwmE8mfNSA210ujDEmgM9MxxfDW76u1cpflXW5c96c8CY0GaObXK1vcE7Eu_dl3bt7IZ5o1Z37kriz7f7r35TgNvqH_5vwCNo_-XdotPMsx9AwVQuexwHhukCDuvrA3qKiYV3hsloLD0FHG-3013TIBaKomDl9ny0-0boU6N3tZ58jhYriET2YYB3a8Novxr0nvP0OAZdJli6xpTSJMiG5Mjo2RGZWRa6QaS0jpongXBOtGNW5lMwFGjqNEmPjTBCibGry9AT2qroyp4B4bJWL1JTliXGNboT2NCxZTC2xCdVn0PLCmM42jBfTrRzO_66-gAMv7wBxY5ewt5yvzBXsq_WyXMyvwzJ9AUw6lqE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_Bo2t1s9pGj1q0V17Vg1d7Kbh5lL7ulL_Dfm6S1InjxNiSEwCSZmUy--QJwrSKW5dryY0FCB1OZeTg3dHehy1nEeRAFlmf7PQnTNBoOWb8GN5taGCmlBZ_JlhHtW76o-MKkytpMO29G2RZs-5QSZ1Wt9Q3PcVj7rqg6t6_UUK3qmx9xW-sBv35OsY6ju_-_KQ-g-VOBh_ob33IINVk24GVgMa4zlFTlGBubitKqxEW5zAwIHa3Op0nUIR2KoniiT_xk9omWRYY-9I42VVIojh_QvbT2oQlv3XjQ6eH1hwi4IL43xyoIiONnOeNSuJLmvuKOFnwhcicUNGNMUMHDQER5HupQQ3gOkcr1M0q58mTkHUG9rEp5DIi5iutYjStGpO7UI4QhYvHdQFFFAnECDaOM0WTFeTFa6-H07-Yr2O0NnpNR8pg-ncGe0b0FvIXnUJ9PF_ICdvhyXsyml3bJvgBPq5no |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Biomedical+Circuits+and+Systems+Conference+%28BioCAS%29&rft.atitle=Towards+Long-term+Non-invasive+Monitoring+for+Epilepsy+via+Wearable+EEG+Devices&rft.au=Ingolfsson%2C+Thorir+Mar&rft.au=Cossettini%2C+Andrea&rft.au=Wang%2C+Xiaying&rft.au=Tabanelli%2C+Enrico&rft.date=2021-10-07&rft.pub=IEEE&rft.spage=01&rft.epage=04&rft_id=info:doi/10.1109%2FBioCAS49922.2021.9644949&rft.externalDocID=9644949 |