Towards Long-term Non-invasive Monitoring for Epilepsy via Wearable EEG Devices
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classification approaches (Support Vector Machines, Random For...
Gespeichert in:
| Veröffentlicht in: | 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) S. 01 - 04 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
07.10.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classification approaches (Support Vector Machines, Random Forest, Extra Trees, AdaBoost) and different pre/post-processing techniques to maximize sensitivity while guaranteeing no false alarms. We analyze global and subject-specific approaches, considering all 23-electrodes or only 4 temporal channels. For 8 s window size and subject-specific approach, we report zero false positives and 100% sensitivity. These algorithms are parallelized and optimized for a parallel ultra-low power (PULP) platform, enabling 300h of continuous monitoring on a 300 mAh battery, in a wearable form factor and power budget. These results pave the way for the implementation of affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patient and caregiver requirements. |
|---|---|
| AbstractList | We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classification approaches (Support Vector Machines, Random Forest, Extra Trees, AdaBoost) and different pre/post-processing techniques to maximize sensitivity while guaranteeing no false alarms. We analyze global and subject-specific approaches, considering all 23-electrodes or only 4 temporal channels. For 8 s window size and subject-specific approach, we report zero false positives and 100% sensitivity. These algorithms are parallelized and optimized for a parallel ultra-low power (PULP) platform, enabling 300h of continuous monitoring on a 300 mAh battery, in a wearable form factor and power budget. These results pave the way for the implementation of affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patient and caregiver requirements. |
| Author | Wang, Xiaying Tabanelli, Enrico Benatti, Simone Benini, Luca Ryvlin, Philippe Ingolfsson, Thorir Mar Cossettini, Andrea Tagliavini, Giuseppe |
| Author_xml | – sequence: 1 givenname: Thorir Mar surname: Ingolfsson fullname: Ingolfsson, Thorir Mar email: thoriri@iis.ee.ethz.ch organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 2 givenname: Andrea surname: Cossettini fullname: Cossettini, Andrea organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 3 givenname: Xiaying surname: Wang fullname: Wang, Xiaying organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 4 givenname: Enrico surname: Tabanelli fullname: Tabanelli, Enrico organization: University of Bologna,DEI,Bologna,Italy – sequence: 5 givenname: Giuseppe surname: Tagliavini fullname: Tagliavini, Giuseppe organization: University of Bologna,DEI,Bologna,Italy – sequence: 6 givenname: Philippe surname: Ryvlin fullname: Ryvlin, Philippe organization: Lausanne University Hospital (CHUV),Switzerland – sequence: 7 givenname: Luca surname: Benini fullname: Benini, Luca organization: Integrated Systems Laboratory,ETH Zürich,Zürich,Switzerland – sequence: 8 givenname: Simone surname: Benatti fullname: Benatti, Simone organization: University of Bologna,DEI,Bologna,Italy |
| BookMark | eNotj8tOwzAUBY0EC1r4Ajb-gQQ_bh5elhBapEAXFLGs7Pi6spTalRMF9e-pRBdHM6uRzoLchhiQEMpZzjlTzy8-NqsvUEqIXDDBc1UCKFA3ZMErUV_GoLon21381cmOtIvhkE2YjvQzhsyHWY9-RvoRg59i8uFAXUy0PfkBT-OZzl7TH9RJmwFp267pK86-x_GB3Dk9jPh45ZJ8v7W7ZpN12_V7s-oyLwo5Za4sBSu0UT1ajmAK17OLFNYaVlnQSlmwfVXa2piqBGklE-h4oQF6J7GWS_L03_WIuD8lf9TpvL9-lH88Wk3o |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BioCAS49922.2021.9644949 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728172047 9781728172040 |
| EndPage | 04 |
| ExternalDocumentID | 9644949 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Swiss National Science Foundation (Project PEDESITE) grantid: agreement funderid: 10.13039/501100001711 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i253t-f66205ab9ced1e4b5fc0d1e5ddb07d4a99d4dc76d8bb7643d302ef15a44cf3e83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000837980700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:53 EDT 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i253t-f66205ab9ced1e4b5fc0d1e5ddb07d4a99d4dc76d8bb7643d302ef15a44cf3e83 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9644949 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9644949 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Oct.-7 |
| PublicationDateYYYYMMDD | 2021-10-07 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-7 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS) |
| PublicationTitleAbbrev | BIOCAS |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9240731 |
| Snippet | We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 01 |
| SubjectTerms | deep learning Electroencephalography Epilepsy healthcare Inference algorithms machine learning Prediction algorithms Sensitivity smart edge computing Support vector machines time series classification Wearable computers |
| Title | Towards Long-term Non-invasive Monitoring for Epilepsy via Wearable EEG Devices |
| URI | https://ieeexplore.ieee.org/document/9644949 |
| WOSCitedRecordID | wos000837980700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRW1Kjl4NG12N5tsjlq3epBasGJvJY9Z2ctu6Qv89yZprQhevIUQCHyZyWQy38wgdJPGTMcZtSQC4xwUkJxoJ8ZE09SKSGkf-QnNJsRolE2nctxAt_tcGAAI5DPo-WGI5dvarP1XWV864y2ZbKKmEHybq_VNzqGyf1_Wg7tX5gutOr8vjnq75b_6pgSzMTz634bHqPOTf4fHe8tyghpQtdHLJDBcl_i5rj6Iv1HxqK5IWW2Up6DjrXb6bzrsHqI4nzt9ny8_8aZU-N3Js8-Rwnn-iB8g3A4d9DbMJ4MnsmuHQMo4TVak4DymqdLSgI2A6bQw1A1SazUVlikpLbNGcJtpBzdLbEJjKKJUMWaKBLLkFLWquoIzhE3BuKFQcKUVsyJR3EZF5t97SkEi4nPU9mDM5tuKF7MdDhd_T3fRocc7UNzEJWqtFmu4QgdmsyqXi-twTF8ssZbH |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61CnpSacW3OXg0bTab7G6OWrdWrGvBir2VvFb2slv6Av-9SVorghdvIRACX2Yymcw3MwBcM0IlSbBGgVHWQTE8QtKKMZKY6TgQ0kV-fLOJOMuS0YgPauBmkwtjjPHkM9NyQx_L15VauK-yNrfGm1O-BbYZpQSvsrW-6TmYt--KqnP7Sl2pVev5kaC1XvCrc4o3HN39_215AJo_GXhwsLEth6BmygZ4GXqO6wz2q_IDuTsVZlWJinIpHAkdrvTTfdRB-xSF6cRq_GT2CZeFgO9Wol2WFEzTB3hv_P3QBG_ddNjpoXVDBFQQFs5RHkUEMyG5MjowVLJcYTtgWkscayo411SrONKJtIDTUIeYmDxgglKVhyYJj0C9rEpzDKDKaaSwySMhBdVxKCId5Il78QlhwpicgIYDYzxZ1bwYr3E4_Xv6Cuz2hs_9cf8xezoDew57T3iLz0F9Pl2YC7CjlvNiNr30R_YFMbCaDg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Biomedical+Circuits+and+Systems+Conference+%28BioCAS%29&rft.atitle=Towards+Long-term+Non-invasive+Monitoring+for+Epilepsy+via+Wearable+EEG+Devices&rft.au=Ingolfsson%2C+Thorir+Mar&rft.au=Cossettini%2C+Andrea&rft.au=Wang%2C+Xiaying&rft.au=Tabanelli%2C+Enrico&rft.date=2021-10-07&rft.pub=IEEE&rft.spage=01&rft.epage=04&rft_id=info:doi/10.1109%2FBioCAS49922.2021.9644949&rft.externalDocID=9644949 |