IRIS-DMEM: Efficient Memory Management for Heterogeneous Computing

This paper proposes an efficient data memory management approach for the Intelligent RuntIme System (IRIS) heterogeneous computing framework along with new data transfer policies. IRIS provides a task-based programming model for extreme heterogeneous computing (e.g., CPU, GPU, DSP, FPGA) with suppor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Conference on High Performance Extreme Computing (Online) S. 1 - 7
Hauptverfasser: Miniskar, Narasinga Rao, Haque Monil, Mohammad Alaul, Valero-Lara, Pedro, Liu, Frank Y., Vetter, Jeffrey S.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 25.09.2023
Schlagworte:
ISSN:2643-1971
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes an efficient data memory management approach for the Intelligent RuntIme System (IRIS) heterogeneous computing framework along with new data transfer policies. IRIS provides a task-based programming model for extreme heterogeneous computing (e.g., CPU, GPU, DSP, FPGA) with support for today's most important programming languages (e.g., OpenMP, OpenCL, CUDA, HIP, OpenACC). However, the IRIS framework either forces the programmer to introduce data transfer commands for each task or relies on suboptimal memory management for automatic and transparent data transfers. The work described here extends IRIS with novel heterogeneous memory handling and introduces novel data transfer policies by employing the Distributed data MEMory handler (DMEM) for efficient and optimal movement of data among the various computing resources. The proposed approach achieves performance gains of up to 7× for tiled LU factorization and tiled DGEMM (i.e., matrix multiplication) benchmarks. Moreover, this approach also reduces data transfers by up to 71% when compared to previous IRIS heterogeneous memory management handlers. This work compares the performance results of the IRIS framework's novel DMEM with the StarPU runtime and MAGMA math library for GPUs. Experiments show a performance gain of up to 1.95× over StarPU and 2.1× over MAGMA.
AbstractList This paper proposes an efficient data memory management approach for the Intelligent RuntIme System (IRIS) heterogeneous computing framework along with new data transfer policies. IRIS provides a task-based programming model for extreme heterogeneous computing (e.g., CPU, GPU, DSP, FPGA) with support for today's most important programming languages (e.g., OpenMP, OpenCL, CUDA, HIP, OpenACC). However, the IRIS framework either forces the programmer to introduce data transfer commands for each task or relies on suboptimal memory management for automatic and transparent data transfers. The work described here extends IRIS with novel heterogeneous memory handling and introduces novel data transfer policies by employing the Distributed data MEMory handler (DMEM) for efficient and optimal movement of data among the various computing resources. The proposed approach achieves performance gains of up to 7× for tiled LU factorization and tiled DGEMM (i.e., matrix multiplication) benchmarks. Moreover, this approach also reduces data transfers by up to 71% when compared to previous IRIS heterogeneous memory management handlers. This work compares the performance results of the IRIS framework's novel DMEM with the StarPU runtime and MAGMA math library for GPUs. Experiments show a performance gain of up to 1.95× over StarPU and 2.1× over MAGMA.
Author Vetter, Jeffrey S.
Haque Monil, Mohammad Alaul
Liu, Frank Y.
Miniskar, Narasinga Rao
Valero-Lara, Pedro
Author_xml – sequence: 1
  givenname: Narasinga Rao
  surname: Miniskar
  fullname: Miniskar, Narasinga Rao
  email: miniskarnr@ornl.gov
  organization: Oak Ridge National Laboratory,Computer Science and Mathematics Division,Oak Ridge,TN,USA
– sequence: 2
  givenname: Mohammad Alaul
  surname: Haque Monil
  fullname: Haque Monil, Mohammad Alaul
  email: monilm@ornl.gov
  organization: Oak Ridge National Laboratory,Computer Science and Mathematics Division,Oak Ridge,TN,USA
– sequence: 3
  givenname: Pedro
  surname: Valero-Lara
  fullname: Valero-Lara, Pedro
  email: valerolarap@ornl.gov
  organization: Oak Ridge National Laboratory,Computer Science and Mathematics Division,Oak Ridge,TN,USA
– sequence: 4
  givenname: Frank Y.
  surname: Liu
  fullname: Liu, Frank Y.
  email: liufy@ornl.gov
  organization: Oak Ridge National Laboratory,Computer Science and Mathematics Division,Oak Ridge,TN,USA
– sequence: 5
  givenname: Jeffrey S.
  surname: Vetter
  fullname: Vetter, Jeffrey S.
  email: vetter@ornl.gov
  organization: Oak Ridge National Laboratory,Computer Science and Mathematics Division,Oak Ridge,TN,USA
BookMark eNo1j81Og0AURkejibXyBibyAuCducwP7pSikJRo_Fk3w_QOwQg0QBd9e2vU1Um-xcl3LtlZP_TE2A2HmHNIb4uXPJPGKIwFCIw5oELJxQkLUp0alIBgFMApWwiVYMRTzS9YME2fAIAoQCMu2EP5Wr5Fqyqv7sLc-9a11M9hRd0wHsLK9rah7mfxwxgWNNM4NNTTsJ_CbOh2-7ntmyt27u3XRMEfl-zjMX_Pimj9_FRm9-uoFRLnqKYtUrL13HnLNfdcOUMOhdTOameEN-J4ShjpNdegaq9JJqkQTtepomPmkl3_elsi2uzGtrPjYfOfjd8H_U0F
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPEC58863.2023.10363512
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350308600
EISSN 2643-1971
EndPage 7
ExternalDocumentID 10363512
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i253t-bed3e4df1cfa171f16c8ec3257ca7c82f82320285f71706bf7e54922c7b96e863
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001156959800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i253t-bed3e4df1cfa171f16c8ec3257ca7c82f82320285f71706bf7e54922c7b96e863
OpenAccessLink https://www.osti.gov/biblio/2438976
PageCount 7
ParticipantIDs ieee_primary_10363512
PublicationCentury 2000
PublicationDate 2023-Sept.-25
PublicationDateYYYYMMDD 2023-09-25
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-25
  day: 25
PublicationDecade 2020
PublicationTitle IEEE Conference on High Performance Extreme Computing (Online)
PublicationTitleAbbrev HPEC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003320733
Score 1.895588
Snippet This paper proposes an efficient data memory management approach for the Intelligent RuntIme System (IRIS) heterogeneous computing framework along with new...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data transfer
Distributed databases
Graphics processing units
Heterogeneous computing
Iris
memory
Memory management
Performance gain
Runtime
Title IRIS-DMEM: Efficient Memory Management for Heterogeneous Computing
URI https://ieeexplore.ieee.org/document/10363512
WOSCitedRecordID wos001156959800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbwIhECat6aEn-7DpOxx6xRbYBbbH2jV60Jg-Em-GhSHxoo3VJv33ZXDV9NBDb4SECTswGWC_-T5C7vJKVzbLC4Ys1izLssBMYX0MdwEqZhyk7EpiE3o4NONxMaqL1VMtDAAk8Bm0sZn-5fu5W-FTWYxwGfMjagrva63WxVrbBxUpBQoQ1hgu_lDc90ZlJzdGyTZqhLc3o3_pqKQ00m3-cwJHpLUryKOjbao5JnswOyHNjSIDrQP0lDz1X_qv7HlQDh5pmcghoj06QDTtN90hXWg8qdIeAmHmcf9AvPzTta1ovEXeu-Vbp8dqlQQ2Fblcsgq8hMwH7oLlmgeunAEnYyg6q50RwQjUSDd50EiVUwUNyMomnK4KBdE7Z6Qxm8_gnFDrCxDWKW99PCY5bVUFQvP4cZxrlesL0kKfTD7WRBiTjTsu_-i_IofoeYRXiPyaNJaLFdyQA_e1nH4ubtPy_QDJh5nF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBT3NHxN_m4PXTpM0TerR2dHhOoZO2G2k6SvsssrcBP9787Juw4MHbyGQR_qSx0vS730fIXcyV7kJZRwgi3UQhmEZ6NgULtw5RC7jIGWXF5tQg4Eej-NhXazua2EAwIPPoI1N_y-_qOwSn8pchAuXH1FTeBels9iqXGvzpCIERwnCGsXFHuL7dJh0pNaRaKNKeHs9_peSik8k3eY_p3BIWtuSPDrcJJsjsgOzY9JcazLQOkRPyFPvtfcWPGdJ9kgTTw_h7NEM8bTfdIt1oe6sSlOEwlRuB4G7_tOVLWe8Rd67yaiTBrVOQjDlUiyCHAoBYVEyWxqmWMkiq8EKF4zWKKt5qTmqpGtZKiTLyUsFyMvGrcrjCJx3TkljVs3gjFBTxMCNjQpTuIOSVSbKgSvmPo4xFUl1Tlrok8nHigpjsnbHxR_9t2Q_HWX9Sb83eLkkB7gKCLbg8oo0FvMlXJM9-7WYfs5v_FL-APo5nQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+High+Performance+Extreme+Computing+%28Online%29&rft.atitle=IRIS-DMEM%3A+Efficient+Memory+Management+for+Heterogeneous+Computing&rft.au=Miniskar%2C+Narasinga+Rao&rft.au=Haque+Monil%2C+Mohammad+Alaul&rft.au=Valero-Lara%2C+Pedro&rft.au=Liu%2C+Frank+Y.&rft.date=2023-09-25&rft.pub=IEEE&rft.eissn=2643-1971&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FHPEC58863.2023.10363512&rft.externalDocID=10363512