Multimodal Extension of the ML-CSC Framework for Medical Image Segmentation

In recent years, Convolutional Neural Networks (CNNs) have led to huge successes across various computer vision applications. However, the lack of interpretability poses a severe barrier for their wider adoption in healthcare. Recently introduced Multilayer Convolutional Sparse Coding (ML-CSC) data...

Full description

Saved in:
Bibliographic Details
Published in:2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 91 - 96
Main Authors: Janssens, Jens, Lazendic, Srdan, Huang, Shaoguang, Pizurica, Aleksandra
Format: Conference Proceeding
Language:English
Published: IEEE 13.09.2021
Subjects:
ISSN:1849-2266
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, Convolutional Neural Networks (CNNs) have led to huge successes across various computer vision applications. However, the lack of interpretability poses a severe barrier for their wider adoption in healthcare. Recently introduced Multilayer Convolutional Sparse Coding (ML-CSC) data model provides a model-based explanation of CNNs. This article aims to extend the ML-CSC framework towards multimodal data processing, which to our knowledge has not been addressed so far. In particular, we focus on interpretable medical image segmentation architecture design for multimodal data. We derive a novel sparse coding algorithm and propose three different CNN architectures with increasing performance, without introducing any additional learnable parameters. Based on the sparse coding theory, our multimodal extension enables the systematic design of interpretable CNN segmentation architectures. Experimental analysis demonstrates that the achieved segmentation results are consistent with the obtained theoretical expectations.
AbstractList In recent years, Convolutional Neural Networks (CNNs) have led to huge successes across various computer vision applications. However, the lack of interpretability poses a severe barrier for their wider adoption in healthcare. Recently introduced Multilayer Convolutional Sparse Coding (ML-CSC) data model provides a model-based explanation of CNNs. This article aims to extend the ML-CSC framework towards multimodal data processing, which to our knowledge has not been addressed so far. In particular, we focus on interpretable medical image segmentation architecture design for multimodal data. We derive a novel sparse coding algorithm and propose three different CNN architectures with increasing performance, without introducing any additional learnable parameters. Based on the sparse coding theory, our multimodal extension enables the systematic design of interpretable CNN segmentation architectures. Experimental analysis demonstrates that the achieved segmentation results are consistent with the obtained theoretical expectations.
Author Huang, Shaoguang
Lazendic, Srdan
Pizurica, Aleksandra
Janssens, Jens
Author_xml – sequence: 1
  givenname: Jens
  surname: Janssens
  fullname: Janssens, Jens
  email: Jens.Janssens@UGent.be
  organization: GAIM,Department of Telecommunications and Information Processing
– sequence: 2
  givenname: Srdan
  surname: Lazendic
  fullname: Lazendic, Srdan
  email: Srdan.Lazendic@UGent.be
  organization: Ghent University,Clifford Research Group, Faculty of Engineering and Architecture,Department of Electronics and Information Systems,Belgium
– sequence: 3
  givenname: Shaoguang
  surname: Huang
  fullname: Huang, Shaoguang
  email: Shaoguang.Huang@UGent.be
  organization: GAIM,Department of Telecommunications and Information Processing
– sequence: 4
  givenname: Aleksandra
  surname: Pizurica
  fullname: Pizurica, Aleksandra
  email: Aleksandra.Pizurica@UGent.be
  organization: GAIM,Department of Telecommunications and Information Processing
BookMark eNotj9FKwzAUhqMoOOeeQJC8QGdO0qQnl6NsOmxRqF6PpDmdwbWVtqK-vQN39d983wf_Nbvo-o4YuwOxBBD2flu9rLQ02iylkLC0WkuB6owtbIZgjE6lURbP2QwwtYmUxlyxxThGL1LUIs0szthT-XWYYtsHd-Drn4m6MfYd7xs-vRMviySvcr4ZXEvf_fDBm37gJYVYH-lt6_bEK9q31E1uOmo37LJxh5EWp52zt836NX9MiueHbb4qkig1TIkl6VJE67VyygNYEjaArjHF0JDWtTcZeAWZwJoEqNqDxaBdQCd8EI2as9v_biSi3ecQWzf87k731R8jPVB-
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA52656.2021.9552083
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665426398
166542639X
EISSN 1849-2266
EndPage 96
ExternalDocumentID 9552083
Genre orig-research
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i251t-9e2a4889b53a3b119e09d15c848dfe55cb671b31708ce013cb198d5ad8a0bd0f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866471200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jun 26 19:29:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i251t-9e2a4889b53a3b119e09d15c848dfe55cb671b31708ce013cb198d5ad8a0bd0f3
OpenAccessLink https://biblio.ugent.be/publication/8716968/file/8716971
PageCount 6
ParticipantIDs ieee_primary_9552083
PublicationCentury 2000
PublicationDate 2021-Sept.-13
PublicationDateYYYYMMDD 2021-09-13
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)
PublicationTitleAbbrev ISPA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504798
ssib042470063
Score 1.7843987
Snippet In recent years, Convolutional Neural Networks (CNNs) have led to huge successes across various computer vision applications. However, the lack of...
SourceID ieee
SourceType Publisher
StartPage 91
SubjectTerms Computer architecture
Convolution
Convolutional codes
Encoding
Image segmentation
interpretable convolutional neural networks
medical image segmentation
Multilayer convolutional sparse coding
multimodal data
Nonhomogeneous media
Signal processing algorithms
Title Multimodal Extension of the ML-CSC Framework for Medical Image Segmentation
URI https://ieeexplore.ieee.org/document/9552083
WOSCitedRecordID wos000866471200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxGGyAePCkBozv9ODRQru7pe3REIhEJSRowo308a0hkV2CYPz5tmXBmHjxtu1h03z7mNntzHwI3ebcaKusJtJjCckEKKL9HOkKT9dpnusEbGw2IUYjOZ2qcQ3d7b0wABDFZ9AOh3Ev35V2E36VdRTniacMdVQXQmy9Wrt7J0syEeB2P5Y8hKfLyhTMqOoMJ-P7EAYfhAkJa1cn-9VVJYLK4Oh_yzlGrR93Hh7vcecE1aBoosfopF2UTr_j_leUpZcFLnPsCR5-fiK9SQ8PdkIs7JkqrrZo8HDhXyl4Am-LyoZUtNDroP_SeyBVowQy9_RkTRQk2j-IyvBUp4YxBVQ5xq3MpMuBc2u6ghnPFKi04DmfNUxJx7WTmhpH8_QUNYqygDOEQ9RR1wqmaUieZ0Zp50Hc-s-QPNOg2TlqhkLMltssjFlVg4u_py_RYah10Few9Ao11qsNXKMD-7mef6xu4gX8Bj1Omkk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFL1BNNGVGjC-nYVLBzqlQ2eWhkAgPEICJuzIPG4NibQGwfj5zpSCMXHjrjOLZnL7OKedc84FeEy4VkYaRYXDEhrFKKlyc7QZO7oeJIkK0eTNJuLRSMxmclyCp70XBhFz8RnW_GG-l28zs_G_yuqS89BRhgM45FEUsq1ba3f3RGEUe8DdjwX38emisAWzQNZ7k_Gzj4P30oSQ1YrT_eqrksNK5_R_CzqD6o8_j4z3yHMOJUwr0M-9tMvMqjfS_sqF6VlKsoQ4ikeGA9qatEhnJ8UijquSYpOG9JbupUIm-LosjEhpFV467WmrS4tWCXThCMqaSgyVexSl5g3V0IxJDKRl3IhI2AQ5N7oZM-24QiAMOtZnNJPCcmWFCrQNksYFlNMsxUsgPuyoaWKmAp89z7RU1sG4cR8iSaRQsSuo-ELM37dpGPOiBtd_Tz_AcXc6HMwHvVH_Bk583b3agjVuobxebfAOjsznevGxus8v5jd3gZ2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+12th+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=Multimodal+Extension+of+the+ML-CSC+Framework+for+Medical+Image+Segmentation&rft.au=Janssens%2C+Jens&rft.au=Lazendic%2C+Srdan&rft.au=Huang%2C+Shaoguang&rft.au=Pizurica%2C+Aleksandra&rft.date=2021-09-13&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=91&rft.epage=96&rft_id=info:doi/10.1109%2FISPA52656.2021.9552083&rft.externalDocID=9552083