Locating controlling regions of neural networks using constrained evolutionary computation

Detection of controlling regions/driver nodes of the cortical networks helps the networks dynamics reach a desired state. Controllability of the complex networks can be accomplished through minimizing two quantities related to the eigenvalues of the extended adjacency matrix. The identification prob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation s. 1581 - 1588
Hlavní autori: Eita, Mohammad A., Shibuya, Tetsuo, Shoukry, Amin A.
Médium: Konferenčný príspevok..
Jazyk:English
Japanese
Vydavateľské údaje: IEEE 01.05.2015
Predmet:
ISSN:1089-778X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Detection of controlling regions/driver nodes of the cortical networks helps the networks dynamics reach a desired state. Controllability of the complex networks can be accomplished through minimizing two quantities related to the eigenvalues of the extended adjacency matrix. The identification problem of the driver nodes can be solved as a Constrained Optimization Problem which unifies these two quantities into one framework. The cat cortical network is taken as an example of a directed weighted complex network. In this paper, the Constrained Dynamic Differential Evolution (CDDE) algorithm is generalized to produce the Generalized Constrained Dynamic Differential Evolution (GCDDE) algorithm. The GCDDE uses the exploitation probability Pe to determine whether the crossover rate CR takes random large values from the range [0.5, 1] to produce different levels of exploration ability or takes random small values from the range [0, 0.5] to produce different levels of exploitation ability. Through the value of Pe, GCCDE can attain the tradeoff between exploration and exploitation with multiformity. Then, the algorithms GCDDE and CDDE are applied to determine the controlling regions of the cortical networks. The results illustrate that GCDDE outperforms four state-of-the-art Constrained Optimization Evolutionary Algorithms and also approaches of the control theory and graph theory. Using GCDDE, the identification problem of driver nodes is investigated in a macroscopic manner. It is found that the controlling regions have a high in-degree and a low out-degree. It is important to mention that when the number of driver nodes increases, the GCDDE can find feasible optimal solutions that make the cat cortical network more controllable.
AbstractList Detection of controlling regions/driver nodes of the cortical networks helps the networks dynamics reach a desired state. Controllability of the complex networks can be accomplished through minimizing two quantities related to the eigenvalues of the extended adjacency matrix. The identification problem of the driver nodes can be solved as a Constrained Optimization Problem which unifies these two quantities into one framework. The cat cortical network is taken as an example of a directed weighted complex network. In this paper, the Constrained Dynamic Differential Evolution (CDDE) algorithm is generalized to produce the Generalized Constrained Dynamic Differential Evolution (GCDDE) algorithm. The GCDDE uses the exploitation probability Pe to determine whether the crossover rate CR takes random large values from the range [0.5, 1] to produce different levels of exploration ability or takes random small values from the range [0, 0.5] to produce different levels of exploitation ability. Through the value of Pe, GCCDE can attain the tradeoff between exploration and exploitation with multiformity. Then, the algorithms GCDDE and CDDE are applied to determine the controlling regions of the cortical networks. The results illustrate that GCDDE outperforms four state-of-the-art Constrained Optimization Evolutionary Algorithms and also approaches of the control theory and graph theory. Using GCDDE, the identification problem of driver nodes is investigated in a macroscopic manner. It is found that the controlling regions have a high in-degree and a low out-degree. It is important to mention that when the number of driver nodes increases, the GCDDE can find feasible optimal solutions that make the cat cortical network more controllable.
Author Shoukry, Amin A.
Eita, Mohammad A.
Shibuya, Tetsuo
Author_xml – sequence: 1
  givenname: Mohammad A.
  surname: Eita
  fullname: Eita, Mohammad A.
  email: mohammad.eita@ejust.edu.eg
  organization: Dept. of Comput. Sci. & Eng., Egypt-Japan Univ. of Sci. & Technol., Alex, Egypt
– sequence: 2
  givenname: Tetsuo
  surname: Shibuya
  fullname: Shibuya, Tetsuo
  email: tshibuya@hgc.jp
  organization: Human Genome Center, Univ. of Tokyo & CREST, Tokyo, Japan
– sequence: 3
  givenname: Amin A.
  surname: Shoukry
  fullname: Shoukry, Amin A.
  email: amin.shoukry@ejust.edu.eg
  organization: Dept. of Comput. Sci. & Eng., Egypt-Japan Univ. of Sci. & Technol., Alex, Egypt
BookMark eNotkE1LxDAQhiOs4Hb1LnjpH-g6SZud5ihldYWCFwXxsqT5WKrdZElSxX9vF3t63uF9GIbJyMJ5Zwi5pbCmFMR9s23WDChfI-MIuLkgGa1QCKwEwwVZUqhFgVi_X5Esxk8AWnEqluSj9Uqm3h1y5V0KfhjOOZhD713Mvc2dGYMcJqQfH75iPsZZjinI3hmdm28_jGnyZfidiuNpTPI8XpNLK4dobmauyNvj9rXZFe3L03Pz0BY94zQVggNUCjoDSjO0eiO07ZBRW9UWFceOQddZzQToyasE1LpUwpZcMtFRtOWK3P3v7Y0x-1Poj9Mh-_kP5R-gL1ZW
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2015.7257076
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISBN 1479974927
9781479974924
EndPage 1588
ExternalDocumentID 7257076
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i251t-95004c0be0cd27fd69dfb721f48f7c57b20bbfd290d04c4908d3c9f35a29b17f3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Wed Aug 27 02:44:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i251t-95004c0be0cd27fd69dfb721f48f7c57b20bbfd290d04c4908d3c9f35a29b17f3
PageCount 8
ParticipantIDs ieee_primary_7257076
PublicationCentury 2000
PublicationDate 20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 20150501
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev CEC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 1.9084042
Snippet Detection of controlling regions/driver nodes of the cortical networks helps the networks dynamics reach a desired state. Controllability of the complex...
SourceID ieee
SourceType Publisher
StartPage 1581
SubjectTerms Complex networks
Control theory
Controllability
Evolutionary computation
Sociology
Statistics
Synchronization
Title Locating controlling regions of neural networks using constrained evolutionary computation
URI https://ieeexplore.ieee.org/document/7257076
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw8O8TLeJv8nBo926NG2a89jwIGMHheFlJC-JCNLKfoH_vUnaTQUvnlralIb3EvKS973vA7hjKeJIxjry6qoRS9BGucU80owzzCiT2qggNsFns3yxEPMG3B9qYYwxAXxmBv425PJ1iVt_VDbkXnKNZ01ocp5VtVqHjIGnSanA9MJFjPlin5KMxXA8GXsMVzqov_8lpBLWkWnnfz04gf53QR6ZH5aaU2iYogudvSIDqSdoF45_0At2oe0jyYqIuQcvj6U_nSteSY1O93XoxOsyuHFHSks8s6V8d5eAC18Tj4gPjddBRsJoYnb1OJWrT4Lh58GvfXieTp7GD1EtrBC9uXBmE4nUTQ2MlYlRU251JrRVbitoWW45plzRWCmrqYi1a-dTgzpBYZNUUqFG3CZn0CrKwpwDiXPJlHAvMkzc3ocqlVErlNTIKKYyvYCet-Lyo-LOWNYGvPz78RW0vaMqQOE1tDarrbmBI9w5Y61ug8O_AJjcrpI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKTgv023itzl4tFuXpk1zHhsT59hhwvAy8imCtLIv8L83Sbup4MVTSxva8F5CXvJ-7_cDuCOxlF0eqsCpqwYkkiZIjUwDRSiRCSZcaeHFJuh4nM5mbFKB-10tjNbag8902936XL7K5dodlXWok1yjyR7sO-WsslprlzNwRCkFnJ7ZmDGdbZOSIev0-j2H4orb5Rd-San4lWRQ_18fjqH1XZKHJrvF5gQqOmtAfavJgMop2oCjHwSDDai5WLKgYm7Cyyh353PZKyrx6a4SHTllBjvyUG6Q47bk7_bikeFL5DDxvvHSC0lohfSmHKl88Ymk_7n3bAueB_1pbxiU0grBmw1oVgGL7eSQodChVJgalTBlhN0MGpIaKmMqcCiEUZiFyrZzyUEVSWaimGMmutREp1DN8kyfAQpTTgSzLxIZ2d0PFiLBhgmuJMEy5vE5NJ0V5x8Fe8a8NODF349v4XA4fRrNRw_jx0uoOacV8MIrqK4Wa30NB3JjDbe48c7_AtvBsds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+transactions+on+evolutionary+computation&rft.atitle=Locating+controlling+regions+of+neural+networks+using+constrained+evolutionary+computation&rft.au=Eita%2C+Mohammad+A.&rft.au=Shibuya%2C+Tetsuo&rft.au=Shoukry%2C+Amin+A.&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1089-778X&rft.spage=1581&rft.epage=1588&rft_id=info:doi/10.1109%2FCEC.2015.7257076&rft.externalDocID=7257076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon