Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning
This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving...
Uložené v:
| Vydané v: | Proceedings (IEEE Conference on Intelligent Transportation Systems) Ročník 2018-November; s. 2148 - 2155 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.11.2018
|
| Predmet: | |
| ISBN: | 9781728103211, 1728103215 |
| ISSN: | 2153-0009, 2153-0017, 2153-0017 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. |
|---|---|
| AbstractList | This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. https://arxiv.org/abs/1803.10056 |
| Author | Wolff, Krister Laine, Leo Hoel, Carl-Johan |
| Author_xml | – sequence: 1 givenname: Carl-Johan surname: Hoel fullname: Hoel, Carl-Johan email: carl-johan.hoel@chalmers.se organization: Chalmers University of Technology, Göteborg, 412 96, Sweden – sequence: 2 givenname: Krister surname: Wolff fullname: Wolff, Krister email: krister.wolff@chalmers.se organization: Chalmers University of Technology, Göteborg, 412 96, Sweden – sequence: 3 givenname: Leo surname: Laine fullname: Laine, Leo email: leo.laine@chalmers.se organization: Chalmers University of Technology, Göteborg, 412 96, Sweden |
| BackLink | https://research.chalmers.se/publication/508724$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNpVkF1LAkEUhqcyyMwfEN3sH9DmzOx8XYp9CUaUdj3Mzp7RLZ2VHSX6960oQjfveeGBh8N7TTqxjkjILdAhADX3k_lsPGQU9FALaYTUZ6RvlAbFNFDOuDgnXQaCDygFdfGPAXROjJor0k_pq20t0ZLTLnkf7bb12m2xzGYbbNPFMpu6iNl46eICswf0VarqmL267yousl3a5wPiJvvAKoa68bjGuM2m6JrYshtyGdwqYf94e-Tz6XE-fhlM354n49F0UDEB24EKiqL3JoAwoeBMUFkUZQ6AYKSm0tO8dEGJ3JeOUSdQBF1IV0CpypwGyXtkdvCmH9zsCrtpqrVrfm3tKttgar_xS-uXbrXGJtmEVqPwzAu00lBl81AW1nGpLDOsyLkCGejeenewVoh4ch5n5387iXL5 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO ADTPV BNKNJ F1S |
| DOI | 10.1109/ITSC.2018.8569568 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present SwePub SwePub Conference SWEPUB Chalmers tekniska högskola |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728103235 1728103231 |
| EISSN | 2153-0017 |
| EndPage | 2155 |
| ExternalDocumentID | oai_research_chalmers_se_8e5c2c5e_6907_4fdb_a367_292b43716f06 8569568 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS ADTPV BNKNJ F1S |
| ID | FETCH-LOGICAL-i251t-7f70ecc9f159fb32506bbd411e196806c04daf754cda20a5e5f8b6ab1d7d40f63 |
| IEDL.DBID | RIE |
| ISBN | 9781728103211 1728103215 |
| ISICitedReferencesCount | 168 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457881302024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2153-0009 2153-0017 |
| IngestDate | Wed Nov 05 04:50:03 EST 2025 Wed Aug 27 02:53:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i251t-7f70ecc9f159fb32506bbd411e196806c04daf754cda20a5e5f8b6ab1d7d40f63 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8569568 swepub_primary_oai_research_chalmers_se_8e5c2c5e_6907_4fdb_a367_292b43716f06 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Nov. 2018 |
| PublicationDateYYYYMMDD | 2018-11-01 2018-01-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Conference on Intelligent Transportation Systems) |
| PublicationTitleAbbrev | ITSC |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000328630 |
| Score | 2.2237828 |
| Snippet | This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network... |
| SourceID | swepub ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 2148 |
| SubjectTerms | Accelerated aging Artificial Intelligence (cs.AI) Decision making Machine Learning (cs.LG) Markov processes Neurons Roads Robotics (cs.RO) |
| Title | Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/8569568 https://research.chalmers.se/publication/508724 |
| Volume | 2018-November |
| WOSCitedRecordID | wos000457881302024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUK4gAXtiLKJh84EnAcJ3aOqIBAKohV6s3yMoZe0oq2fD-2YwpCXLhlUxLNJPLzeN57CB0TpkDlVGVUGJYxqnUmDBUZMEG0oCA4RKLwgN_dieGwvu-gkwUXBgBi8xmchs24lm_HZh5KZWeirAK7bQktcc5brtainhJ04aqCBO4WpyLIxOVlknT62s_TqmZO6rOb56d-aOwSp-mmyV3ll2JoHGWu1v_3fhuo-03Xw_eLgWgTdaDZQms_lAa30cP5fDb24BQsfpr467BqLB6oBnBLL8AXyWsH30Z7Khz64V_9UZjgR4jqqiYWEnESZH3topery-f-dZbcFLKRxzCzjDtOfL5q5wGM04WHPpXWluU5-J9QkMoQZpXjJTNWUaJKKJ3QldK55ZYRVxU7aLkZN7CLsMsV1wUzplQ-17XHMNbwwugAByyjpIe2Q3DkpBXMkCkuPTRoY7s4EbStk6jRmzRv0TFmKqcgBZSGmhJkmLxL5qyWqqi4pDXVrPBzPEeqvb-fso9WQ15bvuABWp69z-EQrZiP2Wj6fhQ_mk8FW78j |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoVGq5QAuoUKA-cGzAduzYOVYUBCKs-NhK3Cx_jIFLdsXu9vfXdsy2qnrpLV9KoplEfh7Pew-hI8INGMpMxZTjFWfWVsoxVQFXxCoGSkImCndyNFIPD-3NCvq65MIAQG4-g-O0mdfy_cQtUqnsRIkmsdveoDXBOaMDW2tZUUnKcE1NEntLMpWE4qgook6v-7Ssa1LSnlyO709Ta5c6Lrct_ip_aYbmceZ84__ecBNt_ybs4ZvlUPQBrUD_Ea3_oTW4hW6_LeaTCE_B4_tpvA6b3uPO9IAHggH-Xtx28HU2qMKpI_4xHoUpvoOsr-pyKREXSdbHbfTj_Gx8elEVP4XqOaKYeSWDJDFjbYgQJtg6gp_GWs8phfgbKtI4wr0JUnDnDSNGgAjKNsZSLz0noal30Go_6eETwoEaaWvunDAx221EMd7J2tkECDxnZBdtpeDo6SCZoUtcdlE3xHZ5IqlbF1mjJ-2esmfMTM9AKxCOOQE6Td81D95qUzdSs5ZZXsdZXiDN3r-f8gW9uxhfd7q7HF19Ru9Tjgf24D5anb8s4AC9dT_nz7OXw_wB_QIjesJq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Conference+on+Intelligent+Transportation+Systems%29&rft.atitle=Automated+Speed+and+Lane+Change+Decision+Making+using+Deep+Reinforcement+Learning&rft.au=Hoel%2C+Carl-Johan+E&rft.au=Wolff%2C+Krister&rft.au=Laine%2C+Leo&rft.date=2018-01-01&rft.issn=2153-0017&rft.volume=2018-November&rft.spage=2148&rft_id=info:doi/10.1109%2FITSC.2018.8569568&rft.externalDocID=oai_research_chalmers_se_8e5c2c5e_6907_4fdb_a367_292b43716f06 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0009&client=summon |

