Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning
This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving...
Gespeichert in:
| Veröffentlicht in: | Proceedings (IEEE Conference on Intelligent Transportation Systems) Jg. 2018-November; S. 2148 - 2155 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.11.2018
|
| Schlagworte: | |
| ISBN: | 9781728103211, 1728103215 |
| ISSN: | 2153-0009, 2153-0017, 2153-0017 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. |
|---|---|
| AbstractList | This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. https://arxiv.org/abs/1803.10056 This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced. |
| Author | Wolff, Krister Laine, Leo Hoel, Carl-Johan |
| Author_xml | – sequence: 1 givenname: Carl-Johan surname: Hoel fullname: Hoel, Carl-Johan email: carl-johan.hoel@chalmers.se organization: Chalmers University of Technology, Göteborg, 412 96, Sweden – sequence: 2 givenname: Krister surname: Wolff fullname: Wolff, Krister email: krister.wolff@chalmers.se organization: Chalmers University of Technology, Göteborg, 412 96, Sweden – sequence: 3 givenname: Leo surname: Laine fullname: Laine, Leo email: leo.laine@chalmers.se organization: Chalmers University of Technology, Göteborg, 412 96, Sweden |
| BackLink | https://research.chalmers.se/publication/508724$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNpVkF1LAkEUhqcyyMwfEN3sH9DmzOx8XYp9CUaUdj3Mzp7RLZ2VHSX6960oQjfveeGBh8N7TTqxjkjILdAhADX3k_lsPGQU9FALaYTUZ6RvlAbFNFDOuDgnXQaCDygFdfGPAXROjJor0k_pq20t0ZLTLnkf7bb12m2xzGYbbNPFMpu6iNl46eICswf0VarqmL267yousl3a5wPiJvvAKoa68bjGuM2m6JrYshtyGdwqYf94e-Tz6XE-fhlM354n49F0UDEB24EKiqL3JoAwoeBMUFkUZQ6AYKSm0tO8dEGJ3JeOUSdQBF1IV0CpypwGyXtkdvCmH9zsCrtpqrVrfm3tKttgar_xS-uXbrXGJtmEVqPwzAu00lBl81AW1nGpLDOsyLkCGejeenewVoh4ch5n5387iXL5 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO ADTPV BNKNJ F1S |
| DOI | 10.1109/ITSC.2018.8569568 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present SwePub SwePub Conference SWEPUB Chalmers tekniska högskola |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728103235 1728103231 |
| EISSN | 2153-0017 |
| EndPage | 2155 |
| ExternalDocumentID | oai_research_chalmers_se_8e5c2c5e_6907_4fdb_a367_292b43716f06 8569568 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS ADTPV BNKNJ F1S |
| ID | FETCH-LOGICAL-i251t-7f70ecc9f159fb32506bbd411e196806c04daf754cda20a5e5f8b6ab1d7d40f63 |
| IEDL.DBID | RIE |
| ISBN | 9781728103211 1728103215 |
| ISICitedReferencesCount | 168 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457881302024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2153-0009 2153-0017 |
| IngestDate | Wed Nov 05 04:50:03 EST 2025 Wed Aug 27 02:53:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i251t-7f70ecc9f159fb32506bbd411e196806c04daf754cda20a5e5f8b6ab1d7d40f63 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8569568 swepub_primary_oai_research_chalmers_se_8e5c2c5e_6907_4fdb_a367_292b43716f06 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Nov. 2018 |
| PublicationDateYYYYMMDD | 2018-11-01 2018-01-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings (IEEE Conference on Intelligent Transportation Systems) |
| PublicationTitleAbbrev | ITSC |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000328630 |
| Score | 2.2242558 |
| Snippet | This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network... |
| SourceID | swepub ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 2148 |
| SubjectTerms | Accelerated aging Artificial Intelligence (cs.AI) Decision making Machine Learning (cs.LG) Markov processes Neurons Roads Robotics (cs.RO) |
| Title | Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/8569568 https://research.chalmers.se/publication/508724 |
| Volume | 2018-November |
| WOSCitedRecordID | wos000457881302024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwFLRaxAEuLAWxyweOpM3i2M4RFRBIgIAWiZvl5bntJa1oy_djO6YgxIVb9kTPsTx-fjOD0HlmXJ8ByxNdWZ0QrlhSSakSaSwhxOv5VjaYTbDHR_72Vj210MWKCwMAofgMun4zrOWbqV76VFmPl9Sz29qozRhruFqrfIrXhaNF6rlbLOdeJi4ro6TT134WVzWztOrdDQd9X9jFu_Gh0V3ll2JoGGVutv73fdto75uuh59WA9EOakG9izZ_KA120PPlcjF14BQMHszcdVjWBt_LGnBDL8BX0WsHPwR7Kuzr4UfuKMzwCwR1VR0SiTgKso720OvN9bB_m0Q3hWTiMMwiYZalrr0q6wCMVYWDPlQpQ7IMXCfkKdUpMdKykmgj81SWUFquqFSZYYaklhb7aK2e1nCAsHIgDrLcKqBAtGRSgufYOujg7jUUDlHHB0fMGsEMEeNyiO6b2K5OeG3rKGo0FnocHGPmYg6CQ6lzXYLwk3dBrFFCFpSJvMoVKdwcz6b06O-3HKMN364NX_AErS3el3CK1vXHYjJ_Pws_zScku8FM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFL0CWqllw1vlUfCiSwJx4tjOEtEiUIcRLYPEzvLjGthkRswM34_tuNMKdcMu70TXsXx8fc85AN-oC30GvSxs623BpBFFq7UptPOMsajn2_pkNiGGQ3l_394swfGCC4OIqfgMT-JmWst3YzuPqbJT2fDIbluGDw1jFe3ZWouMSlSG43UZ2VuiklEojjZZ1OnPPs3rmrRsT69Gt-extEue5Mdmf5U3mqFpnLlYe98XrsP2X8IeuVkMRRuwhN0mrP6jNbgFv87ms3GAp-jI7SRcR3TnyEB3SHqCAfme3XbIdTKoIrEi_iEcxQn5jUlf1aZUIsmSrA_bcHfxY3R-WWQ_heIpoJhZIbwoQ4u1PkAYb-oAfrgxjlGKoRvKktuSOe1Fw6zTVakbbLw0XBvqhGOl5_UOrHTjDr8AMQHGIa28QY7MaqE1RpZtAA_hXsdxF7ZicNSkl8xQOS67MOhjuzgR1a2zrNGjso_JM2aqpqgkNrayDao4fVfMO6N0zYWq2sqwOszyfMn3_v-WI_h0OboeqMHV8Oc-fI5t3LMHD2Bl9jzHr_DRvsyeps-H6Qd6BV-axJM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Conference+on+Intelligent+Transportation+Systems%29&rft.atitle=Automated+Speed+and+Lane+Change+Decision+Making+using+Deep+Reinforcement+Learning&rft.au=Hoel%2C+Carl-Johan+E&rft.au=Wolff%2C+Krister&rft.au=Laine%2C+Leo&rft.date=2018-01-01&rft.issn=2153-0017&rft.volume=2018-November&rft.spage=2148&rft_id=info:doi/10.1109%2FITSC.2018.8569568&rft.externalDocID=oai_research_chalmers_se_8e5c2c5e_6907_4fdb_a367_292b43716f06 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0009&client=summon |

