Super-Logarithmic Lower Bounds for Dynamic Graph Problems
In this work, we prove a \tilde{\Omega}(\lg^{3/2} n) unconditional lower bound on the maximum of the query time and update time for dynamic data structures supporting reachability queries in n-node directed acyclic graphs under edge insertions. This is the first super-logarithmic lower bound for any...
Gespeichert in:
| Veröffentlicht in: | Proceedings / annual Symposium on Foundations of Computer Science S. 1589 - 1604 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
06.11.2023
|
| Schlagworte: | |
| ISSN: | 2575-8454 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this work, we prove a \tilde{\Omega}(\lg^{3/2} n) unconditional lower bound on the maximum of the query time and update time for dynamic data structures supporting reachability queries in n-node directed acyclic graphs under edge insertions. This is the first super-logarithmic lower bound for any natural graph problem. In proving the lower bound, we also make novel contributions to the state-of-the-art data structure lower bound techniques that we hope may lead to further progress in proving lower bounds. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS57990.2023.00096 |