Super-Logarithmic Lower Bounds for Dynamic Graph Problems

In this work, we prove a \tilde{\Omega}(\lg^{3/2} n) unconditional lower bound on the maximum of the query time and update time for dynamic data structures supporting reachability queries in n-node directed acyclic graphs under edge insertions. This is the first super-logarithmic lower bound for any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / annual Symposium on Foundations of Computer Science S. 1589 - 1604
Hauptverfasser: Larsen, Kasper Green, Yu, Huacheng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 06.11.2023
Schlagworte:
ISSN:2575-8454
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we prove a \tilde{\Omega}(\lg^{3/2} n) unconditional lower bound on the maximum of the query time and update time for dynamic data structures supporting reachability queries in n-node directed acyclic graphs under edge insertions. This is the first super-logarithmic lower bound for any natural graph problem. In proving the lower bound, we also make novel contributions to the state-of-the-art data structure lower bound techniques that we hope may lead to further progress in proving lower bounds.
ISSN:2575-8454
DOI:10.1109/FOCS57990.2023.00096