Super-Logarithmic Lower Bounds for Dynamic Graph Problems
In this work, we prove a \tilde{\Omega}(\lg^{3/2} n) unconditional lower bound on the maximum of the query time and update time for dynamic data structures supporting reachability queries in n-node directed acyclic graphs under edge insertions. This is the first super-logarithmic lower bound for any...
Uloženo v:
| Vydáno v: | Proceedings / annual Symposium on Foundations of Computer Science s. 1589 - 1604 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
06.11.2023
|
| Témata: | |
| ISSN: | 2575-8454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work, we prove a \tilde{\Omega}(\lg^{3/2} n) unconditional lower bound on the maximum of the query time and update time for dynamic data structures supporting reachability queries in n-node directed acyclic graphs under edge insertions. This is the first super-logarithmic lower bound for any natural graph problem. In proving the lower bound, we also make novel contributions to the state-of-the-art data structure lower bound techniques that we hope may lead to further progress in proving lower bounds. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS57990.2023.00096 |