Linear Approximation of Deep Neural Networks for Efficient Inference on Video Data

Sequential data such as video are characterized by spatio-temporal correlations. As of yet, few deep learning algorithms exploit them to decrease the often massive cost during inference. This work leverages correlations in video data to linearize part of a deep neural network and thus reduce its siz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 27th European Signal Processing Conference (EUSIPCO) s. 1 - 5
Hlavní autoři: Rueckauer, Bodo, Liu, Shih-Chii
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: EURASIP 01.09.2019
Témata:
ISSN:2076-1465
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sequential data such as video are characterized by spatio-temporal correlations. As of yet, few deep learning algorithms exploit them to decrease the often massive cost during inference. This work leverages correlations in video data to linearize part of a deep neural network and thus reduce its size and computational cost. Drawing upon the simplicity of the typically used rectifier activation function, we replace the ReLU function by dynamically updating masks. The resulting layer stack is a simple chain of matrix multiplications and bias additions, that can be contracted into a single weight matrix and bias vector. Inference then reduces to an affine transformation of the input sequence with these contracted parameters. We show that the method is akin to approximating the neural network with a first-order Taylor expansion around a dynamically updating reference point. The proposed algorithm is evaluated on a denoising convolutional autoencoder.
AbstractList Sequential data such as video are characterized by spatio-temporal correlations. As of yet, few deep learning algorithms exploit them to decrease the often massive cost during inference. This work leverages correlations in video data to linearize part of a deep neural network and thus reduce its size and computational cost. Drawing upon the simplicity of the typically used rectifier activation function, we replace the ReLU function by dynamically updating masks. The resulting layer stack is a simple chain of matrix multiplications and bias additions, that can be contracted into a single weight matrix and bias vector. Inference then reduces to an affine transformation of the input sequence with these contracted parameters. We show that the method is akin to approximating the neural network with a first-order Taylor expansion around a dynamically updating reference point. The proposed algorithm is evaluated on a denoising convolutional autoencoder.
Author Rueckauer, Bodo
Liu, Shih-Chii
Author_xml – sequence: 1
  givenname: Bodo
  surname: Rueckauer
  fullname: Rueckauer, Bodo
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich,Zurich,Switzerland
– sequence: 2
  givenname: Shih-Chii
  surname: Liu
  fullname: Liu, Shih-Chii
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich,Zurich,Switzerland
BookMark eNotkNtKxDAYhKMouK59AhHyAl2TP20Ol8setFBcUdfbJW3_QHBNSlpR396CezVzM8M3c00uQgxIyB1nCxCGm_vN_rV6Xu0WwLhZaMPAGHVGMqMmr0EZxYQ5JzNgSua8kOUVyYbBNww004ozOSMvtQ9oE132fYo__tOOPgYaHV0j9vQJv5I9TjJ-x_QxUBcT3TjnW49hpFVwmDC0SKfIu-8w0rUd7Q25dPY4YHbSOdlvN2-rx7zePVSrZZ17KNmYWyUZdly6UlgolcaiUNq6xk7oHEFw2QJ0jJfaAcpCThtQC0DRNKWUthFzcvvf6xHx0KcJPv0eTi-IP_yzUsM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/EUSIPCO.2019.8902997
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9789082797039
9082797038
EISSN 2076-1465
EndPage 5
ExternalDocumentID 8902997
Genre orig-research
GroupedDBID 6IE
6IL
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i250t-a760ed16f53a2578e4478afba9081e2316c22d0158f2e646076e832e3bb566ab3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604567700320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:31:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i250t-a760ed16f53a2578e4478afba9081e2316c22d0158f2e646076e832e3bb566ab3
PageCount 5
ParticipantIDs ieee_primary_8902997
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 27th European Signal Processing Conference (EUSIPCO)
PublicationTitleAbbrev EUSIPCO
PublicationYear 2019
Publisher EURASIP
Publisher_xml – name: EURASIP
SSID ssib028087106
ssib025355106
Score 1.7050045
Snippet Sequential data such as video are characterized by spatio-temporal correlations. As of yet, few deep learning algorithms exploit them to decrease the often...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biological neural networks
compression
Convolution
Correlation
Deep neural networks
linearization
Neurons
Noise reduction
sequential data
Task analysis
Taylor series
video
Title Linear Approximation of Deep Neural Networks for Efficient Inference on Video Data
URI https://ieeexplore.ieee.org/document/8902997
WOSCitedRecordID wos000604567700320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4sGTSitqVfbg0dh87maP0g_spRa10lvZTSYQkKa0qfjznUlqVfDiKSGQTZjMMjOZ994A3LhxwoRL6cQMoQpZ8tbIMHLSwMWQ6hX0bFoNm1CTSTyf62kDbvdcGESswGd4x6dVLz8tki3_KutxT0xr1YSmUrLman35jh9R4PzRMfRjl0oBV9akHT_Qnu4NZ8_jaf-R8VzkIPVav4aqVDFldPS_tzmGzjc5T0z3YecEGrhswxPVlOSz4p4lwj_ymo8oikwMEFeCFTjMGx0qyPdGUKIqhpV2BD1BjPfL0i2veYqFGJjSdGA2Gr70H5zduAQnpzymdIySLqaezKLA8EYkW6vYZNZoCvtIeZxMfD-l8B9nPspQukoi7WcMrKWcztjgFFrLYolnIKLMstRZqNAmlGHw9HT0tEalkCpGi-fQZnssVrUixmJniou_L3fhkE1eI7MuoVWut3gFB8l7mW_W19Vn_ATxf5tD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfSk0opv9-DR2Dx3s0fpgxZrLdpKb2U3mUCgNKVNxZ_vbFKrghdPCYFswmSW-SYz3zcAt3YYGcIlt0LTQuUbyVvF_cCKPRt9ylfQ0XExbEIMBuFkIocVuNtyYRCxaD7De3Na1PLjLFqbX2UNUxOTUuzAbuD7rl2ytb68xw0odP6oGbqhTcmAzUvajutJRzba49fesPlsOrrIRcrVfo1VKaJK5_B_73ME9W96HhtuA88xVHBegxfKKslr2YMRCf9IS0YiyxLWQlwwo8GhZnQomr5XjKAqaxfqEfQE1tsuS7e8pTFmrKVyVYdxpz1qdq3NwAQrJSSTW0pwG2OHJ4GnzFYka4tQJVpJCvxISI5HrhsTAAgTF7nPbcGRdjR6WhOqU9o7geo8m-MpsCDRRuzMF6gjwhhmfjo6UqIQSDmjxjOoGXtMF6UmxnRjivO_L9_Afnf01J_2e4PHCzgw5i_7tC6hmi_XeAV70XuerpbXxSf9BDZrnoo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+27th+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Linear+Approximation+of+Deep+Neural+Networks+for+Efficient+Inference+on+Video+Data&rft.au=Rueckauer%2C+Bodo&rft.au=Liu%2C+Shih-Chii&rft.date=2019-09-01&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1&rft.epage=5&rft_id=info:doi/10.23919%2FEUSIPCO.2019.8902997&rft.externalDocID=8902997