Sparse Linear Precoders For Mitigating Nonlinearities In Massive MIMO

Dealing with nonlinear effects of the radio-frequency (RF) chain is a key issue in the realization of very large-scale multi-antenna (MIMO) systems. Achieving the remarkable gains possible with massive MIMO requires that the signal processing algorithms systematically take into account these effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Statistical Signal Processing Workshop S. 391 - 395
Hauptverfasser: Mezghani, Amine, Plabst, Daniel, Swindlehurst, Lee A., Fijalkow, Inbar, Nossek, Josef A.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 11.07.2021
Schlagworte:
ISSN:2693-3551
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dealing with nonlinear effects of the radio-frequency (RF) chain is a key issue in the realization of very large-scale multi-antenna (MIMO) systems. Achieving the remarkable gains possible with massive MIMO requires that the signal processing algorithms systematically take into account these effects. Here, we present a computationally-efficient linear precoding method satisfying the requirements for low peak-to-average power ratio (PAPR) and low-resolution D/Aconverters (DACs). The method is based on a sparse regularization of the precoding matrix and offers advantages in terms of precoded signal PAPR as well as processing complexity. Through simulation, we find that the method substantially improves conventional linear precoders.
ISSN:2693-3551
DOI:10.1109/SSP49050.2021.9513791