Sparse Linear Precoders For Mitigating Nonlinearities In Massive MIMO

Dealing with nonlinear effects of the radio-frequency (RF) chain is a key issue in the realization of very large-scale multi-antenna (MIMO) systems. Achieving the remarkable gains possible with massive MIMO requires that the signal processing algorithms systematically take into account these effects...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Statistical Signal Processing Workshop s. 391 - 395
Hlavní autoři: Mezghani, Amine, Plabst, Daniel, Swindlehurst, Lee A., Fijalkow, Inbar, Nossek, Josef A.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 11.07.2021
Témata:
ISSN:2693-3551
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dealing with nonlinear effects of the radio-frequency (RF) chain is a key issue in the realization of very large-scale multi-antenna (MIMO) systems. Achieving the remarkable gains possible with massive MIMO requires that the signal processing algorithms systematically take into account these effects. Here, we present a computationally-efficient linear precoding method satisfying the requirements for low peak-to-average power ratio (PAPR) and low-resolution D/Aconverters (DACs). The method is based on a sparse regularization of the precoding matrix and offers advantages in terms of precoded signal PAPR as well as processing complexity. Through simulation, we find that the method substantially improves conventional linear precoders.
AbstractList Dealing with nonlinear effects of the radio-frequency (RF) chain is a key issue in the realization of very large-scale multi-antenna (MIMO) systems. Achieving the remarkable gains possible with massive MIMO requires that the signal processing algorithms systematically take into account these effects. Here, we present a computationally-efficient linear precoding method satisfying the requirements for low peak-to-average power ratio (PAPR) and low-resolution D/Aconverters (DACs). The method is based on a sparse regularization of the precoding matrix and offers advantages in terms of precoded signal PAPR as well as processing complexity. Through simulation, we find that the method substantially improves conventional linear precoders.
Author Plabst, Daniel
Swindlehurst, Lee A.
Mezghani, Amine
Fijalkow, Inbar
Nossek, Josef A.
Author_xml – sequence: 1
  givenname: Amine
  surname: Mezghani
  fullname: Mezghani, Amine
  organization: University of Manitoba,MB,Canada
– sequence: 2
  givenname: Daniel
  surname: Plabst
  fullname: Plabst, Daniel
  organization: Technische Universität München,Germany
– sequence: 3
  givenname: Lee A.
  surname: Swindlehurst
  fullname: Swindlehurst, Lee A.
  organization: University of California,Irvine,CA,USA
– sequence: 4
  givenname: Inbar
  surname: Fijalkow
  fullname: Fijalkow, Inbar
  organization: CY Cergy Paris Univ, ENSEA, CNRS,ETIS,Paris,France
– sequence: 5
  givenname: Josef A.
  surname: Nossek
  fullname: Nossek, Josef A.
  organization: Technische Universität München,Germany
BookMark eNotj11LwzAYRqMouM39AhHyB1rzJs3XpYxtFlo3qF6PtH0zIrMdSRH894ru6oHD4cAzJzfDOCAhj8ByAGafmmZfWCZZzhmH3EoQ2sIVmYPmBqRWWl2TGVdWZEJKuCPLlD4YY6AMF4bPyLo5u5iQVmFAF-k-Yjf2GBPdjJHWYQpHN4XhSF_H4fSn_CJMtBxo7VIKX0jrst7dk1vvTgmXl12Q9836bfWSVbttuXqussAlmzLtW-i8EF5J5EY6DsJZVXhUom1bq2TXA7TaqL4XvEM0mrWFcYwV3PueW7EgD__dgIiHcwyfLn4fLq_FDxH-TZE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSP49050.2021.9513791
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728157676
9781728157672
EISSN 2693-3551
EndPage 395
ExternalDocumentID 9513791
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i250t-7fb1cf33f65e285a213a964fe63bbb965cd11b786dd32cee870b48a0042ffd293
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722246500079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i250t-7fb1cf33f65e285a213a964fe63bbb965cd11b786dd32cee870b48a0042ffd293
OpenAccessLink https://hal.science/hal-03438247v1/file/mezghaniSSP2021_arxiv2105.05086.pdf
PageCount 5
ParticipantIDs ieee_primary_9513791
PublicationCentury 2000
PublicationDate 2021-July-11
PublicationDateYYYYMMDD 2021-07-11
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July-11
  day: 11
PublicationDecade 2020
PublicationTitle IEEE Statistical Signal Processing Workshop
PublicationTitleAbbrev SSP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001682382
Score 1.7917918
Snippet Dealing with nonlinear effects of the radio-frequency (RF) chain is a key issue in the realization of very large-scale multi-antenna (MIMO) systems. Achieving...
SourceID ieee
SourceType Publisher
StartPage 391
SubjectTerms Complexity theory
Massive MIMO
Peak to average power ratio
Phase shift keying
Precoding
Radio frequency
Signal processing algorithms
Title Sparse Linear Precoders For Mitigating Nonlinearities In Massive MIMO
URI https://ieeexplore.ieee.org/document/9513791
WOSCitedRecordID wos000722246500079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b4MwELXSqEO79COp-i0PHUuCDf5grhI1A2mktFK2CJtzlYVEhPT39wwoaaUu3RDCAp1t3ruD946QJ8EylajQBMpZG8RWQKBzngcG2bhyiTZC2LrZhJpO9WKRzDrkea-FAYD65zMY-MP6W36-tjtfKhsiG4iUl6ofKSUbrdahniI1og9vRTosTIbz-SxOQhFiEsjZoB37q4lKjSHjs__d_Zz0D2I8OtvDzAXpQHFJTn_4CPbIaL7B_BQoJpa4cPFq8Er1ckvH65Kmq8ZGo_ik08YXIytrG1U6KWiK3BnfdzSdpG998jEevb-8Bm1_hGCFxKXC8BpmXRQ5KYBrkXEWZYmMHcjIGJNIYXPGjNIyzyOOT4lb08Q68_vUuRxx_op0i3UB14R6lxmcTQiRn8UO8YoBYOaB5MxYLrPshvR8QJabxgJj2cbi9u_Td-TEx9yXQBm7J92q3MEDObZf1WpbPtbz9g3z15jg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb4JAEJ0Y26TtpR_a9Lt76LEoC-wC50ajqVATbeLNsMts4wUNan9_Z5HUNumlN0LYQGZ3eW8G3huAJ8GzMA5d5YRGayfQAp0o93JHERsPTRwpIXTVbCJM02g2i8cNeP7WwiBi9fMZduxh9S0_X-qtLZV1iQ34oZWqH9jOWbVaa19RkRHhj1fLdLgbdyeTcRC7wqU00OOdevSvNioVivRP_3f_M2jv5Xhs_A0059DA4gJOfjgJtqA3WVGGioxSS1q6dDVarXq5Zv1lyZLFzkij-GDpzhkjKysjVTYsWELsmd54LBkmb2147_emLwOn7pDgLIi6bCjAimvj-0YK9CKRedzPYhkYlL5SKpZC55yrMJJ57nv0lLQ5VRBldqcakxPSX0KzWBZ4Bcz6zNB8oksMLTCEWByRcg-iZ0p7MsuuoWUDMl_tTDDmdSxu_j79CEeDaTKaj4bp6y0c2_jbgijnd9DclFu8h0P9uVmsy4dqDr8AHQmcKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Statistical+Signal+Processing+Workshop&rft.atitle=Sparse+Linear+Precoders+For+Mitigating+Nonlinearities+In+Massive+MIMO&rft.au=Mezghani%2C+Amine&rft.au=Plabst%2C+Daniel&rft.au=Swindlehurst%2C+Lee+A.&rft.au=Fijalkow%2C+Inbar&rft.date=2021-07-11&rft.pub=IEEE&rft.eissn=2693-3551&rft.spage=391&rft.epage=395&rft_id=info:doi/10.1109%2FSSP49050.2021.9513791&rft.externalDocID=9513791