Scaling Expected Force: Efficient Identification of Key Nodes in Network-Based Epidemic Models

Structural centrality measures are often used to approximate or predict dynamical influence in a network. The recently proposed Expected Force of Infection (ExF) measures the entropy of all potential transmission paths starting at a node, effectively characterizing a node's role in epidemic dif...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings - Euromicro Workshop on Parallel and Distributed Processing pp. 98 - 107
Main Authors: Labini, Paolo Sylos, Jurco, Andrej, Ceccarello, Matteo, Guarino, Stefano, Mastrostefano, Enrico, Vella, Flavio
Format: Conference Proceeding
Language:English
Published: IEEE 20.03.2024
Subjects:
ISSN:2377-5750
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Structural centrality measures are often used to approximate or predict dynamical influence in a network. The recently proposed Expected Force of Infection (ExF) measures the entropy of all potential transmission paths starting at a node, effectively characterizing a node's role in epidemic diffusion processes. However, this promising metric has seen limited adoption mainly due to an inefficient formulation and the lack of an open-source implementation. In this paper, we present a novel cluster-centric, parallel algorithm enhancing ExF's efficiency and scalability. Compared to the simple parallel version of the original formulation of the ExF our efficient, open-source GPU implementation enables key nodes detection at previously intractable scales, with speed-ups of up to 300 x on networks with up to 44 million edges. Leveraging on our algorithm, we compare the ExF with other well-known centrality metrics, upon six real and synthetic contact networks. The ExF emerges as the best of the considered metrics in a few, important tasks: it predicts the likelihood of a global epidemic and its diffusion speed, based on the centrality of the seed node; and it predicts how many other infections will occur as a consequence, in some sense, of a specific node having caught the disease.
AbstractList Structural centrality measures are often used to approximate or predict dynamical influence in a network. The recently proposed Expected Force of Infection (ExF) measures the entropy of all potential transmission paths starting at a node, effectively characterizing a node's role in epidemic diffusion processes. However, this promising metric has seen limited adoption mainly due to an inefficient formulation and the lack of an open-source implementation. In this paper, we present a novel cluster-centric, parallel algorithm enhancing ExF's efficiency and scalability. Compared to the simple parallel version of the original formulation of the ExF our efficient, open-source GPU implementation enables key nodes detection at previously intractable scales, with speed-ups of up to 300 x on networks with up to 44 million edges. Leveraging on our algorithm, we compare the ExF with other well-known centrality metrics, upon six real and synthetic contact networks. The ExF emerges as the best of the considered metrics in a few, important tasks: it predicts the likelihood of a global epidemic and its diffusion speed, based on the centrality of the seed node; and it predicts how many other infections will occur as a consequence, in some sense, of a specific node having caught the disease.
Author Ceccarello, Matteo
Jurco, Andrej
Vella, Flavio
Mastrostefano, Enrico
Guarino, Stefano
Labini, Paolo Sylos
Author_xml – sequence: 1
  givenname: Paolo Sylos
  orcidid: 0000-0002-7950-4396
  surname: Labini
  fullname: Labini, Paolo Sylos
  organization: Free University of Bozen-Bolzano,Bolzano,Italy
– sequence: 2
  givenname: Andrej
  surname: Jurco
  fullname: Jurco, Andrej
  email: andrej.jurco@me.com
  organization: Free University of Bozen-Bolzano,Bolzano,Italy
– sequence: 3
  givenname: Matteo
  orcidid: 0000-0003-2783-0218
  surname: Ceccarello
  fullname: Ceccarello, Matteo
  organization: University of Padova,Padova,Italy
– sequence: 4
  givenname: Stefano
  orcidid: 0000-0002-1545-7711
  surname: Guarino
  fullname: Guarino, Stefano
  organization: Institute for Applied Mathematics National Research Council,Rome,Italy
– sequence: 5
  givenname: Enrico
  orcidid: 0000-0002-0023-7943
  surname: Mastrostefano
  fullname: Mastrostefano, Enrico
  organization: Institute for Applied Mathematics National Research Council,Rome,Italy
– sequence: 6
  givenname: Flavio
  orcidid: 0000-0002-5676-9228
  surname: Vella
  fullname: Vella, Flavio
  organization: University of Trento,Trento,Italy
BookMark eNotT9tKw0AUXEXBtvYL9GF_IHHvF9-0plqstaC-Wjabs7KabkIS0P69AX2ZYZgLzBSdpCYBQheU5JQSe7W92yqmqckZYSInhDB6hOZWW8Ml4YoTLY7RhHGtM6klOUPTvv8cY1owO0HvL97VMX3g4qcFP0CFl03n4RoXIUQfIQ14VY0YR-WG2CTcBPwIB7xpKuhxTHgDw3fTfWW3rh_bRRsr2EePn0a_7s_RaXB1D_N_nqG3ZfG6eMjWz_erxc06i0zYIbMlVRaCZooaQo1xRlHlXRkEr7iQIDiMP6wkzNmSayYF8FBWypbKS-oEn6HLv90IALu2i3vXHXaUCCulNPwXiklVGw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PDP62718.2024.00021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350363074
EISSN 2377-5750
EndPage 107
ExternalDocumentID 10495558
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i249t-9b169ef726180188a8616cabf43d345e43e3079502a9b37254e3fbd69b6c51a43
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209048200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:09:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i249t-9b169ef726180188a8616cabf43d345e43e3079502a9b37254e3fbd69b6c51a43
ORCID 0000-0002-7950-4396
0000-0003-2783-0218
0000-0002-5676-9228
0000-0002-1545-7711
0000-0002-0023-7943
OpenAccessLink https://hdl.handle.net/11577/3541891
PageCount 10
ParticipantIDs ieee_primary_10495558
PublicationCentury 2000
PublicationDate 2024-March-20
PublicationDateYYYYMMDD 2024-03-20
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-20
  day: 20
PublicationDecade 2020
PublicationTitle Proceedings - Euromicro Workshop on Parallel and Distributed Processing
PublicationTitleAbbrev PDP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0007429
Score 1.8639231
Snippet Structural centrality measures are often used to approximate or predict dynamical influence in a network. The recently proposed Expected Force of Infection...
SourceID ieee
SourceType Publisher
StartPage 98
SubjectTerms Big Data
Computational modeling
Epidemic
Epidemics
Expected Force
Force
Force measurement
Graph Centrality
Graphics processing units
Measurement
Network
Parallel Computing
Scalability
SIR
Title Scaling Expected Force: Efficient Identification of Key Nodes in Network-Based Epidemic Models
URI https://ieeexplore.ieee.org/document/10495558
WOSCitedRecordID wos001209048200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7u4sHT-ljxTQ5eq0kfeXhUdxGUUlBhTy5pMoEFaWUfgv_eSdtdvXjwVkpJYMLky6TzfR8hl5CZlHnDImkx3VIPPjKxcpE2mmdWqYTbRsT1Sea5mkx00ZHVGy4MADTNZ3AVHpt_-a62q3BVhhmOx_ksUz3Sk1K0ZK3Ntos1nu5khTjT18V9IWLceLEEjINANgtqoL8MVBr8GA_-OfMuGf4w8WixwZg9sgXVPhmsrRhol5kH5O0ZY41f0CBdbPEUScf13MINHTUSETg4bSm5vrujo7Wnj_BF89rBgs4qmrf94NEtwpqjo9Y41tLglfa-GJLX8ejl7iHqrBOiGdZTy0iXXGjwEusjhCCljBJcWFP6NHFJmkGaACa3zlhsdJlIrBIh8aUTuhQ24yZNDkm_qis4ItQgxlnEdceNTrmTmjGjlQhjyhiYOCbDEK_pR6uOMV2H6uSP96dkJyxJ6OOK2RnpL-crOCfb9nM5W8wvmjX9BjtZoZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA06BX2aHxO_zYOv1bRN2sRHdWOyWQpO2JMjTW5hIK3sQ_Dfe9N20xcffCulJHDDzclN7zmHkGsQmrNcMy82mG48h9zTgbSe0soXRsrQN5WI6zBOEjkeq7Qhq1dcGAComs_gxj1W__JtaZbuqgwzHI_zQshNsiU4D1hN11pvvFjlqUZYyGfqNn1MowC3XiwCAyeRzZwe6C8LlQpBeu1_zr1HOj9cPJquUWafbEBxQNorMwba5OYheXvBaOMX1IkXGzxH0l45M3BHu5VIBA5Oa1Ju3tzS0TKnA_iiSWlhTqcFTeqOcO8egc3Sbm0da6hzS3ufd8hrrzt66HuNeYI3xYpq4anMjxTkMVZICEJSahn5kdFZzkMbcgE8BExvJVigVRbGWCdCmGc2UllkhK95eERaRVnAMaEaUc4gsltfK-7bWDGmlYzcmHEALDohHRevyUetjzFZher0j_dXZKc_eh5Ohk_J4IzsuuVxXV0BOyetxWwJF2TbfC6m89lltb7f08Wk2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Euromicro+Workshop+on+Parallel+and+Distributed+Processing&rft.atitle=Scaling+Expected+Force%3A+Efficient+Identification+of+Key+Nodes+in+Network-Based+Epidemic+Models&rft.au=Labini%2C+Paolo+Sylos&rft.au=Jurco%2C+Andrej&rft.au=Ceccarello%2C+Matteo&rft.au=Guarino%2C+Stefano&rft.date=2024-03-20&rft.pub=IEEE&rft.eissn=2377-5750&rft.spage=98&rft.epage=107&rft_id=info:doi/10.1109%2FPDP62718.2024.00021&rft.externalDocID=10495558