Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks

Unprecedented access to multi-temporal satellite imagery has opened new perspectives for a variety of Earth observation tasks. Among them, pixel-precise panoptic segmentation of agricultural parcels has major economic and environmental implications. While researchers have explored this problem for s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / IEEE International Conference on Computer Vision s. 4852 - 4861
Hlavní autori: Fare Garnot, Vivien Sainte, Landrieu, Loic
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2021
Predmet:
ISSN:2380-7504
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Unprecedented access to multi-temporal satellite imagery has opened new perspectives for a variety of Earth observation tasks. Among them, pixel-precise panoptic segmentation of agricultural parcels has major economic and environmental implications. While researchers have explored this problem for single images, we argue that the complex temporal patterns of crop phenology are better addressed with temporal sequences of images. In this paper, we present the first end-to-end, single-stage method for panoptic segmentation of Satellite Image Time Series (SITS). This module can be combined with our novel image sequence encoding network which relies on temporal self-attention to extract rich and adaptive multi-scale spatiotemporal features. We also introduce PASTIS, the first open-access SITS dataset with panoptic annotations. We demonstrate the superiority of our encoder for semantic segmentation against multiple competing architectures, and set up the first state-of-the-art of panoptic segmentation of SITS. Our implementation and PASTIS are publicly available.
AbstractList Unprecedented access to multi-temporal satellite imagery has opened new perspectives for a variety of Earth observation tasks. Among them, pixel-precise panoptic segmentation of agricultural parcels has major economic and environmental implications. While researchers have explored this problem for single images, we argue that the complex temporal patterns of crop phenology are better addressed with temporal sequences of images. In this paper, we present the first end-to-end, single-stage method for panoptic segmentation of Satellite Image Time Series (SITS). This module can be combined with our novel image sequence encoding network which relies on temporal self-attention to extract rich and adaptive multi-scale spatiotemporal features. We also introduce PASTIS, the first open-access SITS dataset with panoptic annotations. We demonstrate the superiority of our encoder for semantic segmentation against multiple competing architectures, and set up the first state-of-the-art of panoptic segmentation of SITS. Our implementation and PASTIS are publicly available.
Author Landrieu, Loic
Fare Garnot, Vivien Sainte
Author_xml – sequence: 1
  givenname: Vivien Sainte
  surname: Fare Garnot
  fullname: Fare Garnot, Vivien Sainte
  email: vivien.sainte-fare-garnot@ign.fr
  organization: Univ. Gustave Eiffel, ENSG, IGN,LASTIG,Saint-Mande,France,F-94160
– sequence: 2
  givenname: Loic
  surname: Landrieu
  fullname: Landrieu, Loic
  email: loic.landrieu@ign.fr
  organization: Univ. Gustave Eiffel, ENSG, IGN,LASTIG,Saint-Mande,France,F-94160
BookMark eNotj9FKwzAUhqMouM09gV7kBTpzTps2uRxFZ2GosOntSLPTGW2b0kaHb2-HXv3fxccH_5RdtL4lxm5BLACEvivy_C1RGnGBAmEhRKLiMzbXmYI0lQkqQHnOJhgrEWVSJFdsOgwfQsQaVTph9sW0vgvO8g0dGmqDCc633Fd8YwLVtQvEi8YciG9dQ6PUOxr40YV3nvv229dfJ9_UfEtN5_sRliGMmVPkicLR95_DNbusTD3Q_H9n7PXhfps_RuvnVZEv15HDRIdIJxKA9sqqPZQmFVWFZWkyS1Zmcg9GGl1ajZZGTMmW4zdbCUo1qTJDrOIZu_nrOiLadb1rTP-z0xkAKB3_Ah1eWqk
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV48922.2021.00483
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Applied Sciences
EISBN 9781665428125
1665428120
EISSN 2380-7504
EndPage 4861
ExternalDocumentID 9711189
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i249t-94511ed8c8d1ba60ff2bba7cec575d1a5a9bc92ce1a56ecb428cf0e69e8b722f3
IEDL.DBID RIE
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797698905008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:25:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i249t-94511ed8c8d1ba60ff2bba7cec575d1a5a9bc92ce1a56ecb428cf0e69e8b722f3
OpenAccessLink https://hal.science/hal-03500523
PageCount 10
ParticipantIDs ieee_primary_9711189
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.585842
Snippet Unprecedented access to multi-temporal satellite imagery has opened new perspectives for a variety of Earth observation tasks. Among them, pixel-precise...
SourceID ieee
SourceType Publisher
StartPage 4852
SubjectTerms Computer vision
Economics
Feature extraction
grouping and shape
Image segmentation
Satellites
Segmentation
Semantics
Time series analysis
Vision + other modalities
Vision applications and systems
Title Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks
URI https://ieeexplore.ieee.org/document/9711189
WOSCitedRecordID wos000797698905008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB2sFNqTrVr6TQ49dtVddzfJsUilQhFBK94kH5Mi6G5xV39_k93VUuilt5BLIMnMm0zmvQF4UhZUIxNqz8KL8UJhlCck9j0beQvGIipV0UVh_k7HY7ZY8EkNno9cGEQsis-w44bFX75O1c6lyrqcWstk_AROKI1LrtbB61qYZ3FFjfN7vDsaDOYh44HjWgV-p1BO_9VApcCPYeN_K19A-4eIRyZHiLmEGiZNaFSRI6nsMmvC2YFfnLVATUSSWkegyBQ_NxW1KCGpIVNRyG_mSEYb60aIo38Qlx7DjLh8LLGr7qurKNZkVqpWrclLnpdFkWRcFo1nbfgYvs4Gb17VSsFb2fdV7nEnQ4aaKaZ9KeKeMYGUgipUNlzTvogEl4oHCu0wRiXto0SZHsYcmaRBYPpXUE_SBK-BRGHsJHXQp9SEVPYY6lBZs2faaJdAuYGW27_lV6mWsay27vbv6Ts4dwdUlsfdQz3f7vABTtU-X2Xbx-KIvwEnHap9
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuAJBYzf9uDRBXbZj_ZoiAQibkhAwo203akhgV3DLvx-291FY-LFW9NLk7Yzbzqd9wbgUWpQ9ZQbWRpelOVyJS0usGfpyJtT6gVC5l0U5uMgDOliwSYVePrmwiBiXnyGbTPM__KjRO5MqqzDAm2ZlB3BsemcVbK1Dn5XAz31S3Kc3WWdUb8_dylzDNvKsdu5dvqvFio5ggzq_1v7DFo_VDwy-QaZc6hg3IB6GTuS0jLTBtQODOO0CXLC40S7Akmm-LEpyUUxSRSZ8lyAM0My2mhHQgwBhJgEGabEZGSJXnVfXka-JrNCt2pNnrOsKIskYVE2nrbgffAy6w-tspmCtdIvrMxiRogMIyppZAvud5VyhOCBRKkDtsjmHmdCMkeiHvoohX6WSNVFnyEVgeOo3gVU4yTGSyCe6xtRHbSDQLmB6FKMXKkNn0YqMimUK2ia_Vt-FnoZy3Lrrv-efoDacPY2Xo5H4esNnJrDKorlbqGabXd4Bydyn63S7X1-3F8z1K3G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Panoptic+Segmentation+of+Satellite+Image+Time+Series+with+Convolutional+Temporal+Attention+Networks&rft.au=Fare+Garnot%2C+Vivien+Sainte&rft.au=Landrieu%2C+Loic&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=4852&rft.epage=4861&rft_id=info:doi/10.1109%2FICCV48922.2021.00483&rft.externalDocID=9711189