Exact and Approximate Pattern Counting in Degenerate Graphs: New Algorithms, Hardness Results, and Complexity Dichotomies

We study the problems of counting the homomorphisms, the copies, and the induced copies of a k -vertex graph H in a d -degenerate n -vertex graph G . By leveraging a new family of graph-minor obstructions called F-gadgets, we establish explicit and exhaustive complexity classifications for counting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / annual Symposium on Foundations of Computer Science S. 276 - 285
Hauptverfasser: Bressan, Marco, Roth, Marc
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.02.2022
Schlagworte:
ISSN:2575-8454
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the problems of counting the homomorphisms, the copies, and the induced copies of a k -vertex graph H in a d -degenerate n -vertex graph G . By leveraging a new family of graph-minor obstructions called F-gadgets, we establish explicit and exhaustive complexity classifications for counting copies and induced copies. For instance., we show that the copies of H in G can be counted in time f(k, d)n^{\max(1,\mathsf{imn}(H))} \log n , where f is some computable function and \mathsf{imn} (H) is the size of the largest induced matching of H ; and that whenever the class of allowed patterns has arbitrarily large induced matchings, no algorithm runs in time f(k, d)n^{o(\mathsf{imn}(H)/\log \mathsf{imn}(H))} for any function f , unless the Exponential Time Hypothesis fails. A similar result holds for counting induced copies, with the independence number \alpha(H) in place of \mathsf{imn}(H) . These results imply complexity dichotomies, into fixed-parameter tractable versus #W[1]-hard cases, which parallel the well-known dichotomies when d is not a parameter. Our results also imply the #W[1]-hardness of counting several patterns, such as k -matchings and k -trees, in d - degenerate graphs. We also give new hardness results and approximation algorithms for generalized pattern counting (i.e., counting patterns with a given property) in degenerate graphs.
AbstractList We study the problems of counting the homomorphisms, the copies, and the induced copies of a k -vertex graph H in a d -degenerate n -vertex graph G . By leveraging a new family of graph-minor obstructions called F-gadgets, we establish explicit and exhaustive complexity classifications for counting copies and induced copies. For instance., we show that the copies of H in G can be counted in time f(k, d)n^{\max(1,\mathsf{imn}(H))} \log n , where f is some computable function and \mathsf{imn} (H) is the size of the largest induced matching of H ; and that whenever the class of allowed patterns has arbitrarily large induced matchings, no algorithm runs in time f(k, d)n^{o(\mathsf{imn}(H)/\log \mathsf{imn}(H))} for any function f , unless the Exponential Time Hypothesis fails. A similar result holds for counting induced copies, with the independence number \alpha(H) in place of \mathsf{imn}(H) . These results imply complexity dichotomies, into fixed-parameter tractable versus #W[1]-hard cases, which parallel the well-known dichotomies when d is not a parameter. Our results also imply the #W[1]-hardness of counting several patterns, such as k -matchings and k -trees, in d - degenerate graphs. We also give new hardness results and approximation algorithms for generalized pattern counting (i.e., counting patterns with a given property) in degenerate graphs.
Author Roth, Marc
Bressan, Marco
Author_xml – sequence: 1
  givenname: Marco
  surname: Bressan
  fullname: Bressan, Marco
  email: marco.bressan@unimi.it
  organization: University of Milan,Department of Computer Science,Milan,Italy
– sequence: 2
  givenname: Marc
  surname: Roth
  fullname: Roth, Marc
  email: marc.roth@cs.ox.ac.uk
  organization: Merton College, University of Oxford,Department of Computer Science,Oxford,United Kingdom
BookMark eNotj11PwjAYhavRREB_gV70Bzhsu77b6h0ZXyZEjB_XpHTvoGZ0S1si_HshenWSc548yemTK9c6JOSBsyHnTD1Nl-UHCJWroWCCDxljaXZB-jzLQAoGkF6SnoAckkKCvCH9EL4ZkwyY7JHj5KBNpNpVdNR1vj3YnY5I33SM6B0t272L1m2odXSMG3Toz_PM624bnukr_tBRs2m9jdtdeKRz7SuHIdB3DPsmnpqzuGx3XYMHG490bM22je3OYrgl17VuAt7954B8TSef5TxZLGcv5WiRWCFVTDKoMAcDWS5ZIXjOKxCVXmuN1TpVpmK1NlAIkxdCGplzZYDXrICi5lJxg-mA3P95LSKuOn866I8rdSILDukverJgCA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS52979.2021.00036
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1665420553
9781665420556
EISSN 2575-8454
EndPage 285
ExternalDocumentID 9719815
Genre orig-research
GroupedDBID --Z
29O
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i249t-65de75c5674082171d52dabaaedb39cd0fac582c7824c4719c51f0858f1491ce3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802209600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:49:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i249t-65de75c5674082171d52dabaaedb39cd0fac582c7824c4719c51f0858f1491ce3
OpenAccessLink http://hdl.handle.net/2434/922295
PageCount 10
ParticipantIDs ieee_primary_9719815
PublicationCentury 2000
PublicationDate 2022-Feb.
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-Feb.
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.2448637
Snippet We study the problems of counting the homomorphisms, the copies, and the induced copies of a k -vertex graph H in a d -degenerate n -vertex graph G . By...
SourceID ieee
SourceType Publisher
StartPage 276
SubjectTerms Approximation algorithms
Complexity theory
Computer science
counting problems
degenerate graphs
fine-grained complexity theory
parameterized algorithms
Pattern matching
Title Exact and Approximate Pattern Counting in Degenerate Graphs: New Algorithms, Hardness Results, and Complexity Dichotomies
URI https://ieeexplore.ieee.org/document/9719815
WOSCitedRecordID wos000802209600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG6QeNALChi_04NHBtug6-aN8KEXkfiRcCNd2-ES2AwbBv6971sGxsSLt6VN2-Vd9n60fZ6HkLvIY4xHoWu5gaetjvJtS3g6tALF2lL6UHTJ0IhN8NHIn0yCcYk09lgYrbW5fKab-GjO8lUqV7hV1go4lMiIKD_g3NtitXZeF_IOu1NA4xw7aA2fe6_MDThiUVynaXhXfgmomPgxrPxv5RNS_wHi0fE-xJySkk6qpLJTYqDFj1klx0979tWsRjaDtZA5FYmiXaQMX8fQAxMZKs2E9gp5CBontK9nhncauh-Qujq7p-D2aHc-S5dx_rHIGhTP9tEf0hedreY5tODE-A7IpZlvaD9GHFe6gJq7Tt6Hg7feo1VILFgx1F255TGlOZPM4yg87XBHMVeJUAitwnYglR0JyXxXQh7RkRDHAsmcCLI0P4LKypG6fUbKSZroc0JdJVkoBeR_kJU5gosQjcO5jaNh5AWpoV2nn1sWjWlh0su_m6_IkYtAA3M_-pqU8-VK35BD-ZXH2fLWfPpvohiyLg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6igvoyr3g3Dz5abbOlaXwbuzhxm-IFfBtpkmrBdbJ2sv17z4l1IvjiW0lIUg7tuST5vo-Q0yTkXCQx85gMrVczke-p0MaeNLyqdQRFl46d2ITo96PnZ3m3QM7mWBhrrbt8Zs_x0Z3lm5Ge4FbZhRRQIiOifAmVs0q01rffhczDr5XguMCXF-3bxgNnUiAahQXnjnnll4SKiyDtyv_WXifbP1A8ejcPMhtkwWabpPKtxUDLX3OTrPXm_Kv5Fpm1pkoXVGWG1pE0fJpCD0zkyDQz2igFImia0aZ9cczT0H2F5NX5JQXHR-tvL6NxWrwO8zOKp_voEem9zSdvBbTgxPgOyKZZzGgzRSTXaAhV9zZ5arceGx2vFFnwUqi8Ci_kxgqueShQejoQgeHMqFgpa-Kq1MZPlOYR05BJ1DREMql5kECeFiVQWwXaVnfIYjbK7C6hzGgeawUZIORlgRIqRuMI4eNoGLlHttCug_cvHo1BadL9v5tPyErnsdcddK_7NwdklSHswN2WPiSLxXhij8iy_ijSfHzsPoNPFDK1dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Exact+and+Approximate+Pattern+Counting+in+Degenerate+Graphs%3A+New+Algorithms%2C+Hardness+Results%2C+and+Complexity+Dichotomies&rft.au=Bressan%2C+Marco&rft.au=Roth%2C+Marc&rft.date=2022-02-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=276&rft.epage=285&rft_id=info:doi/10.1109%2FFOCS52979.2021.00036&rft.externalDocID=9719815