SkinningNet: Two-Stream Graph Convolutional Neural Network for Skinning Prediction of Synthetic Characters

This work presents SkinningNet, an end-to-end Two-Stream Graph Neural Network architecture that computes skinning weights from an input mesh and its associated skeleton, without making any assumptions on shape class and structure of the provided mesh. Whereas previous meth-ods pre-compute handcrafte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 18572 - 18581
Hlavní autoři: Mosella-Montoro, Albert, Ruiz-Hidalgo, Javier
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2022
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work presents SkinningNet, an end-to-end Two-Stream Graph Neural Network architecture that computes skinning weights from an input mesh and its associated skeleton, without making any assumptions on shape class and structure of the provided mesh. Whereas previous meth-ods pre-compute handcrafted features that relate the mesh and the skeleton or assume a fixed topology of the skeleton, the proposed method extracts this information in an end-to-end learnable fashion by jointly learning the best relationship between mesh vertices and skeleton joints. The proposed method exploits the benefits of the novel Multi-Aggregator Graph Convolution that combines the results of different aggregators during the summarizing step of the Message-Passing scheme, helping the operation to general-ize for unseen topologies. Experimental results demonstrate the effectiveness of the contributions of our novel architecture, with SkinningNet outperforming current state-of-the-art alternatives.
ISSN:1063-6919
DOI:10.1109/CVPR52688.2022.01804