Eciton: Very Low-Power LSTM Neural Network Accelerator for Predictive Maintenance at the Edge

This paper presents Eciton, a very low-power LSTM neural network accelerator for low-power edge sensor nodes, demonstrating real-time processing on predictive maintenance applications with a power consumption of 17 mW under load. Eciton reduces memory and chip resource requirements via 8-bit quantiz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Field-programmable Logic and Applications s. 1 - 8
Hlavní autoři: Chen, Jeffrey, Hong, Sehwan, He, Warrick, Moon, Jinyeong, Jun, Sang-Woo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2021
Témata:
ISSN:1946-1488
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.