Eciton: Very Low-Power LSTM Neural Network Accelerator for Predictive Maintenance at the Edge
This paper presents Eciton, a very low-power LSTM neural network accelerator for low-power edge sensor nodes, demonstrating real-time processing on predictive maintenance applications with a power consumption of 17 mW under load. Eciton reduces memory and chip resource requirements via 8-bit quantiz...
Uloženo v:
| Vydáno v: | International Conference on Field-programmable Logic and Applications s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2021
|
| Témata: | |
| ISSN: | 1946-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents Eciton, a very low-power LSTM neural network accelerator for low-power edge sensor nodes, demonstrating real-time processing on predictive maintenance applications with a power consumption of 17 mW under load. Eciton reduces memory and chip resource requirements via 8-bit quantization and hard sigmoid activation, allowing the accelerator as well as the LSTM model parameters to fit in a lowcost, low-power Lattice iCE40 UP5K FPGA. Eciton demonstrates real-time processing at a very low power consumption with minimal loss of accuracy on two predictive maintenance scenarios with differing characteristics, while achieving competitive power efficiency against the state-of-the-art of similar scale. We also show that the addition of this accelerator actually reduces the power budget of the sensor node by reducing power-hungry wireless transmission.The resulting power budget of the sensor node is small enough to be powered by a power harvester, potentially allowing it to run indefinitely without a battery or periodic maintenance. |
|---|---|
| AbstractList | This paper presents Eciton, a very low-power LSTM neural network accelerator for low-power edge sensor nodes, demonstrating real-time processing on predictive maintenance applications with a power consumption of 17 mW under load. Eciton reduces memory and chip resource requirements via 8-bit quantization and hard sigmoid activation, allowing the accelerator as well as the LSTM model parameters to fit in a lowcost, low-power Lattice iCE40 UP5K FPGA. Eciton demonstrates real-time processing at a very low power consumption with minimal loss of accuracy on two predictive maintenance scenarios with differing characteristics, while achieving competitive power efficiency against the state-of-the-art of similar scale. We also show that the addition of this accelerator actually reduces the power budget of the sensor node by reducing power-hungry wireless transmission.The resulting power budget of the sensor node is small enough to be powered by a power harvester, potentially allowing it to run indefinitely without a battery or periodic maintenance. |
| Author | Chen, Jeffrey He, Warrick Moon, Jinyeong Hong, Sehwan Jun, Sang-Woo |
| Author_xml | – sequence: 1 givenname: Jeffrey surname: Chen fullname: Chen, Jeffrey email: jeffrc2@uci.edu organization: University of California,Department of Computer Science,Irvine – sequence: 2 givenname: Sehwan surname: Hong fullname: Hong, Sehwan email: sehwanh@uci.edu organization: University of California,Department of Computer Science,Irvine – sequence: 3 givenname: Warrick surname: He fullname: He, Warrick email: warrickhe@gmail.com organization: Diamond Bar High School – sequence: 4 givenname: Jinyeong surname: Moon fullname: Moon, Jinyeong email: j.moon@fsu.edu organization: Florida State University,Department of Electrical and Computer Engineering – sequence: 5 givenname: Sang-Woo surname: Jun fullname: Jun, Sang-Woo email: swjun@uci.edu organization: University of California,Department of Computer Science,Irvine |
| BookMark | eNotjt9KwzAYxaMouM09wW7yAp358qdpvBujU6HTgtM7GTH9qtHaShote3sr-oPDuTnncKbkpO1aJGQBbAnAzMWmLJTQJltyxmHJRswRmUKaKim0MukxmYCRaQIyy87IvO_ffjNK6kylE_KUOx-79pI-YjjQohuSshsw0OJ-t6W3-BVsM1ocuvBOV85hg8HGLtB6VBmw8i76b6Rb69uIrW0dUhtpfEWaVy94Tk5r2_Q4__cZedjku_V1Utxd3axXReK5zGIia8klq8EKMKzimElnNSAzXKlUVsoo_sxBKMm0HL-jrZzhGmoLtRFag5iRxd-uR8T9Z_AfNhz2ZmyLkR-JZ1Oy |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/FPL53798.2021.00009 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665437596 9781665437592 |
| EISSN | 1946-1488 |
| EndPage | 8 |
| ExternalDocumentID | 9556333 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i248t-4f4240f1a3190d2e84ca71e0925564d5952b21354074000eadc9271fa1f937713 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728589800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:25:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i248t-4f4240f1a3190d2e84ca71e0925564d5952b21354074000eadc9271fa1f937713 |
| OpenAccessLink | https://escholarship.org/uc/item/8p35m8pz |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9556333 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Aug. |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-Aug. |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Field-programmable Logic and Applications |
| PublicationTitleAbbrev | FPL |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000547856 |
| Score | 2.072466 |
| Snippet | This paper presents Eciton, a very low-power LSTM neural network accelerator for low-power edge sensor nodes, demonstrating real-time processing on predictive... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | CPS edge iCE40 IoT Lattices low power LSTM Memory management Neural networks Power demand Predictive Maintenance Quantization (signal) Wireless communication Wireless sensor networks |
| Title | Eciton: Very Low-Power LSTM Neural Network Accelerator for Predictive Maintenance at the Edge |
| URI | https://ieeexplore.ieee.org/document/9556333 |
| WOSCitedRecordID | wos000728589800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7a4sGTSiu-2YNHY7PJbjfrTaTFQ1oC1tKLlM0-pCBpqaniv3dmWyqCF09ZckhgspP5dh7fR8i1ZyhgLtKozJSPOKwj7VIGpxThldKAKIJ0wiSXo1E2naqiQW52szDOudB85m5xGWr5dmHWmCrrKmSzStMmaUopN7Nau3xKjMRUorclFmKx6g6KXKRSYf9WwgJPofoloRIiyODgf-8-JJ2fUTxa7ILMEWm4qk1e-gYcsbqjE7f6ovniMypQ7IzmT-MhRboN_QaX0N9N742ByBKK6RQAKjwMSzP4k6NDjWQRyLjhqK4pQEHat6-uQ54H_fHDY7TVSYjmCc_qiHsOcdkzDe4U28Rl3GjJXKyQXoxboURSJgwTPBI8Noa9Y1QimdfMAziBU-oxaVWLyp0Qyssk7fUANAlmuQVIa50ts1iVjPtYCHNK2mia2XJDhTHbWuXs79vnZB9tv-mXuyCterV2l2TPfNTz99VV-H7fLOKZPQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zCnpS2cRvc_BoXdMma-NNZGNiNwrOsYuMNB8ykE5mp_jf-142JoIXTw09NJD05f3yPn4_Qi4dQwFzEQdFKl3AYRwoGzO4pQgnpQJE4aUTRlkyGKTjscxr5GrdC2Ot9cVn9hqHPpdvZnqBobKWRDarON4gm4LziC27tdYRlRCpqUR7RS3EQtnq5pmIE4kVXBHzTIXyl4iK9yHd3f_NvkeaP814NF-7mX1Ss2WDPHc0mGJ5Q0d2_kWz2WeQo9wZzR6HfYqEG-oVHr7Cm95qDb7Fp9MpQFT4GCZn8JijfYV0Eci5YamqKIBB2jEvtkmeup3hXS9YKSUE04inVcAdB8_smAKDCk1kU65VwmwokWCMGyFFVEQMQzwJ2GwIf4-WUcKcYg7gCdxTD0i9nJX2kFBeRHG7DbBJMMMNgFpjTZGGsmDchULoI9LApZm8LckwJqtVOf779QXZ7g372SS7HzyckB3ch2X13CmpV_OFPSNb-qOavs_P_V5-A1cmnIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Field-programmable+Logic+and+Applications&rft.atitle=Eciton%3A+Very+Low-Power+LSTM+Neural+Network+Accelerator+for+Predictive+Maintenance+at+the+Edge&rft.au=Chen%2C+Jeffrey&rft.au=Hong%2C+Sehwan&rft.au=He%2C+Warrick&rft.au=Moon%2C+Jinyeong&rft.date=2021-08-01&rft.pub=IEEE&rft.eissn=1946-1488&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FFPL53798.2021.00009&rft.externalDocID=9556333 |