Trust No One: Low Rank Matrix Factorization Using Hierarchical RANSAC

In this paper we present a system for performing low rank matrix factorization. Low-rank matrix factorization is an essential problem in many areas, including computer vision with applications in affine structure-from-motion, photometric stereo, and non-rigid structure from motion. We specifically t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 5820 - 5829
Hlavní autoři: Oskarsson, Magnus, Batstone, Kenneth, Astrom, Kalle
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2016
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we present a system for performing low rank matrix factorization. Low-rank matrix factorization is an essential problem in many areas, including computer vision with applications in affine structure-from-motion, photometric stereo, and non-rigid structure from motion. We specifically target structured data patterns, with outliers and large amounts of missing data. Using recently developed characterizations of minimal solutions to matrix factorization problems with missing data, we show how these can be used as building blocks in a hierarchical system that performs bootstrapping on all levels. This gives a robust and fast system, with state-of-the-art performance.
ISSN:1063-6919
DOI:10.1109/CVPR.2016.627