Trust No One: Low Rank Matrix Factorization Using Hierarchical RANSAC

In this paper we present a system for performing low rank matrix factorization. Low-rank matrix factorization is an essential problem in many areas, including computer vision with applications in affine structure-from-motion, photometric stereo, and non-rigid structure from motion. We specifically t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 5820 - 5829
Hlavní autori: Oskarsson, Magnus, Batstone, Kenneth, Astrom, Kalle
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2016
Predmet:
ISSN:1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we present a system for performing low rank matrix factorization. Low-rank matrix factorization is an essential problem in many areas, including computer vision with applications in affine structure-from-motion, photometric stereo, and non-rigid structure from motion. We specifically target structured data patterns, with outliers and large amounts of missing data. Using recently developed characterizations of minimal solutions to matrix factorization problems with missing data, we show how these can be used as building blocks in a hierarchical system that performs bootstrapping on all levels. This gives a robust and fast system, with state-of-the-art performance.
ISSN:1063-6919
DOI:10.1109/CVPR.2016.627