Automatical gender detection for unconstrained video sequences based on collaborative representation
Many intelligent systems are required to deal with the situation of human-computer interaction. As one of the most important front ends, gender classification plays an irreplaceable role. For practical use, a real-time robust gender classification system is presented in this paper. The system consis...
Saved in:
| Published in: | 2014 12th International Conference on Signal Processing (ICSP) pp. 1263 - 1267 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.10.2014
|
| Subjects: | |
| ISBN: | 9781479921881, 1479921882 |
| ISSN: | 2164-5221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many intelligent systems are required to deal with the situation of human-computer interaction. As one of the most important front ends, gender classification plays an irreplaceable role. For practical use, a real-time robust gender classification system is presented in this paper. The system consists of three principal modules: image preprocessing, face detector and gender classifier. To enhance the classification accuracy with affordable complexity, Haar-like features and Ada-Boost-trained classifier are applied to the face detector while Eigenface features and collaborative representation classifier are embedded to the gender classifier. Experimental results verify the real-time ability and gender classification accuracy of the proposed system. It is worth mentioning that the system performs well when handling faces with occlusion and complex background. |
|---|---|
| AbstractList | Many intelligent systems are required to deal with the situation of human-computer interaction. As one of the most important front ends, gender classification plays an irreplaceable role. For practical use, a real-time robust gender classification system is presented in this paper. The system consists of three principal modules: image preprocessing, face detector and gender classifier. To enhance the classification accuracy with affordable complexity, Haar-like features and Ada-Boost-trained classifier are applied to the face detector while Eigenface features and collaborative representation classifier are embedded to the gender classifier. Experimental results verify the real-time ability and gender classification accuracy of the proposed system. It is worth mentioning that the system performs well when handling faces with occlusion and complex background. |
| Author | Lijia Lu Weiyang Liu Yuexian Zou Yandong Wen |
| Author_xml | – sequence: 1 surname: Lijia Lu fullname: Lijia Lu email: lulijia@sz.pku.edu.cn organization: Sch. of Electron. & Comput. Eng., Peking Univ., Beijing, China – sequence: 2 surname: Weiyang Liu fullname: Weiyang Liu email: wyliu@pku.edu.cn organization: Sch. of Electron. & Comput. Eng., Peking Univ., Beijing, China – sequence: 3 surname: Yandong Wen fullname: Yandong Wen email: wen.yandong@mail.scut.edu.cn organization: Sch. of Electron. & Inf. Eng., South China Univ. of Technol., Guangzhou, China – sequence: 4 surname: Yuexian Zou fullname: Yuexian Zou email: zouyx@pkusz.edu.cn organization: Sch. of Electron. & Comput. Eng., Peking Univ., Beijing, China |
| BookMark | eNo1kN1KAzEUhCNWsK19Ab3JC2zN326yl6X4UyhUUK9Lds-JrGyTmmQLvr0r1qthzgwfnJmRiQ8eCbnlbMk5q-83693ry1Iwrpaa8VIwcUFmXOm6FtxU1SVZ1Nr8e8MnZCp4pYpSCH5NFil9Msa41lILPSWwGnI42Ny1tqcf6AEjBczY5i546kKkg2-DTznaziPQUwcYaMKvAX2LiTY2jdex2oa-t02II-qENOIxYkKf7S_nhlw52ydcnHVO3h8f3tbPxXb3tFmvtkUnVJkLVVZOWlVqIZE1RoIRJXInNRoOtoZKQWOUEegAAcZfa1dB6xwTwMYY5Zzc_XE7RNwfY3ew8Xt_Hkn-ACgMXe4 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICOSP.2014.7015202 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1479921866 9781479921867 1479921874 9781479921874 |
| EndPage | 1267 |
| ExternalDocumentID | 7015202 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i245t-456f3a45723e0b83d825e1f37e81da9d64db8482efdedd1869f6dcff02d0a9de3 |
| IEDL.DBID | RIE |
| ISBN | 9781479921881 1479921882 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365529500244&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2164-5221 |
| IngestDate | Wed Aug 27 01:44:21 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i245t-456f3a45723e0b83d825e1f37e81da9d64db8482efdedd1869f6dcff02d0a9de3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7015202 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Oct. |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 12th International Conference on Signal Processing (ICSP) |
| PublicationTitleAbbrev | ICOSP |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001773727 ssj0003188636 |
| Score | 1.5541363 |
| Snippet | Many intelligent systems are required to deal with the situation of human-computer interaction. As one of the most important front ends, gender classification... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1263 |
| SubjectTerms | Ada-Boost algorithm Automatical gender detection Classification algorithms Collaborative representation classifier Detectors Face Feature extraction Real-time system Real-time systems Robustness |
| Title | Automatical gender detection for unconstrained video sequences based on collaborative representation |
| URI | https://ieeexplore.ieee.org/document/7015202 |
| WOSCitedRecordID | wos000365529500244&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1q8aAXP1rxmz14NG2y2WR3j1IUBakFFXor2cxECpJKTfv7nd2maQUv3jKbkITNwpvZzHuPsZswRNAWqCzBJPeUnMAKS2GGAiRBbmg9UfhZDYd6PDajFrttuDCI6JvPsOcO_b98mOULt1XWV4RdwilH7iiVrrham_0U5QxXVBPTWtWpdwgUVBFQvSUiz-tSxhCqabGWe6rjaE2oCU3_afDyOnJdX7JXP_GX9YpHnoeD_73zIetuKHx81IDTEWthecz2t9QHOwzuFtXMK7Zmn_zDW8pxwMr3ZpWckllOmOfSR-cigcAdY2_Gm95r7gAQOF26tZaWyL1M5prSVHbZ-8P92-AxqE0XgqmQSRVQQlXEmUyUiDG0OgYqITEqYoWU2WYGUglWSy2wAARwhlZFCnlRhAJCOo3xCWuXsxJPGZc6VxEYTaNCWkl3lXmSGhsbJ9JWJGes4-Zr8rXS1ZjUU3X-9_AF23OfZNVId8na1XyBV2w3X1bT7_m1Xww_rvmwBg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1KFdSLH6347R48mjbdbLKboxSlxVoLVuitJJmJFCSRmvb3O7tN0wpevGU2IQmbhTezmfceY3eui6BjoLIE_cRScpxYxBRGKEAS5LqxJQoP1HCoJ5NwVGP3FRcGEW3zGbbMof2XD3myMFtlbUXYJYxy5I4vqe5ZsbU2OyrKWK6oKqbVqgPrESioJqCKS3Qss0uFIeGaFmvBpzLurCk1btjud1_fRqbvS7bKZ_4yX7HY83T4v7c-Ys0NiY-PKng6ZjXMTtjBlv5gg8HDositZmv0yT-sqRwHLGx3VsYpneWEeiaBND4SCNxw9nJedV9zA4HA6dKt1bREboUy16SmrMnenx7H3Z5T2i44MyH9wqGUKvUi6SvhoRtrD6iIxE7qKaTcNgohkBBrqQWmgADG0ioNIElTV4BLp9E7ZfUsz_CMcakT1YFQ06iQsaS7ysQPwtgLjUxb6p-zhpmv6ddKWWNaTtXF38O3bK83fhlMB_3h8yXbN59n1VZ3xerFfIHXbDdZFrPv-Y1dGD8JArNN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+12th+International+Conference+on+Signal+Processing+%28ICSP%29&rft.atitle=Automatical+gender+detection+for+unconstrained+video+sequences+based+on+collaborative+representation&rft.au=Lijia+Lu&rft.au=Weiyang+Liu&rft.au=Yandong+Wen&rft.au=Yuexian+Zou&rft.date=2014-10-01&rft.pub=IEEE&rft.isbn=9781479921881&rft.issn=2164-5221&rft.spage=1263&rft.epage=1267&rft_id=info:doi/10.1109%2FICOSP.2014.7015202&rft.externalDocID=7015202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-5221&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-5221&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-5221&client=summon |

