A MapReduce Enabled Simulated Annealing Genetic Algorithm

Intelligent algorithms such as genetic algorithms and simulated annealing algorithms have widely been applied to the field of large scale data analysis and data processing. It is potential for the high-performance distributed computing technologies or platforms to further increase the execution effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2014 International Conference on Identification, Information and Knowledge in the Internet of Things S. 252 - 255
Hauptverfasser: Luokai Hu, Jin Liu, Chao Liang, Fuchuan Ni
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2014
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Intelligent algorithms such as genetic algorithms and simulated annealing algorithms have widely been applied to the field of large scale data analysis and data processing. It is potential for the high-performance distributed computing technologies or platforms to further increase the execution efficiency of these traditional intelligent algorithms. Against this background, we propose a novel MapReduce enabled simulated annealing genetic algorithm that has two distinctive characteristics. The first is that, our algorithm is the synthesis of the conventional genetic algorithm and the simulated annealing algorithm. While most genetic algorithms are easy to fall into local optimal solution, the simulated annealing algorithm accepts non-optimal solution at a certain probability to jump out of local optimal. This characteristic guarantees our proposed algorithm has a higher probability of getting the global optimal solution than traditional genetic algorithms. The other is that our algorithm is a parallel algorithm running on the high-performance parallel platform Phoenix++ other than a conventional serial genetic algorithm. Phoenix++ implements the MapReduce programming model that processes and generates large data sets with our parallel, distributed algorithm on a cluster. The experiments on Phoenix++ indicate that the convergence speed of the proposed algorithm significantly outperforms its traditional genetic rivals.
AbstractList Intelligent algorithms such as genetic algorithms and simulated annealing algorithms have widely been applied to the field of large scale data analysis and data processing. It is potential for the high-performance distributed computing technologies or platforms to further increase the execution efficiency of these traditional intelligent algorithms. Against this background, we propose a novel MapReduce enabled simulated annealing genetic algorithm that has two distinctive characteristics. The first is that, our algorithm is the synthesis of the conventional genetic algorithm and the simulated annealing algorithm. While most genetic algorithms are easy to fall into local optimal solution, the simulated annealing algorithm accepts non-optimal solution at a certain probability to jump out of local optimal. This characteristic guarantees our proposed algorithm has a higher probability of getting the global optimal solution than traditional genetic algorithms. The other is that our algorithm is a parallel algorithm running on the high-performance parallel platform Phoenix++ other than a conventional serial genetic algorithm. Phoenix++ implements the MapReduce programming model that processes and generates large data sets with our parallel, distributed algorithm on a cluster. The experiments on Phoenix++ indicate that the convergence speed of the proposed algorithm significantly outperforms its traditional genetic rivals.
Author Jin Liu
Luokai Hu
Fuchuan Ni
Chao Liang
Author_xml – sequence: 1
  surname: Luokai Hu
  fullname: Luokai Hu
  organization: Lenovo Mobile Commun. Technol. Co., Ltd., Xiamen, China
– sequence: 2
  surname: Jin Liu
  fullname: Jin Liu
  email: mailjinliu@yahoo.com
  organization: Guangxi Key Lab. of Trusted Software, Guilin Univ. of Electron. Technol., Guilin, China
– sequence: 3
  surname: Chao Liang
  fullname: Chao Liang
  organization: Lenovo Mobile Commun. Technol. Co., Ltd., Xiamen, China
– sequence: 4
  surname: Fuchuan Ni
  fullname: Fuchuan Ni
  organization: Dept. of Comput. Sci., Huazhong Agric. Univ., Wuhan, China
BookMark eNotzL1OwzAUQGEjgQQt3dhY8gIN98Y_iceoKm1EERJ0YKuu7ZtiKXGrJB14e5BgOt90ZuI6nRIL8YCQI4J9apqXJi8AVa6rKzFDVVpbAcjPW7EYx-igMKVRRhZ3wtbZK53fOVw8Z-tEruOQfcT-0tH0qzolpi6mY7bhxFP0Wd0dT0Ocvvp7cdNSN_Liv3Oxf17vV9vl7m3TrOrdMhZKT0usgsXWe1YMylHpZEUWybSyLUnLyktJofAKtAYTZIuanUa01gSF7ORcPP5tIzMfzkPsafg-lGAUKJA_3jpFOg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IIKI.2014.58
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 147998003X
9781479980031
EndPage 255
ExternalDocumentID 7064040
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i245t-18d91fcce4e04ba7b38a91a6f3f7a538c33ad2c405506d3f15eb511996d41eb3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380556200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Dec 20 05:19:10 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i245t-18d91fcce4e04ba7b38a91a6f3f7a538c33ad2c405506d3f15eb511996d41eb3
PageCount 4
ParticipantIDs ieee_primary_7064040
PublicationCentury 2000
PublicationDate 2014-Oct.
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-Oct.
PublicationDecade 2010
PublicationTitle 2014 International Conference on Identification, Information and Knowledge in the Internet of Things
PublicationTitleAbbrev IIKI
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764632
Score 1.5699803
Snippet Intelligent algorithms such as genetic algorithms and simulated annealing algorithms have widely been applied to the field of large scale data analysis and...
SourceID ieee
SourceType Publisher
StartPage 252
SubjectTerms Algorithm design and analysis
Clustering algorithms
Genetic algorithm; Simulated Annealing algorithm
Genetic algorithms
Signal processing algorithms
Simulated annealing
Sociology
Statistics
Title A MapReduce Enabled Simulated Annealing Genetic Algorithm
URI https://ieeexplore.ieee.org/document/7064040
WOSCitedRecordID wos000380556200055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4g8cDJBxjFR3rw6ALd7bbbIzEQiUqIcuBGuu1USeQRAv5-O7uIHrx4m2zSbnba7bT95vsG4Ja7lOeY6_CnZQQz-mBlTkdO5dLIELDQFkThJzUcZpOJHlXgbs-FQcQi-QxbZBZYvlvaLV2VtRXBTiIc0A-UkiVX63vuxFJJIZN4n9uu24PB44Byt0SL6rn_qp1ShI7-0f9eegyNHw4eG-2jywlUcHEKNdobltLKddBd9mxWL6S9iqxXcKAce53NqSBXsLphBTVENmckLR2asO7H23I927zPGzDu98b3D9GuEkI0i0W6iXhwH_fWosCOyI3Kk8xobqRPvDJhybJJYlxsw-Yr7UiXeJ5iTgChlk7wcFw-g-piucBzYCkhi055jaT1JzBTInSdx94QZ7ZjLqBOLpiuSq2L6e7rm38_voQaObhMbruC6ma9xWs4tJ_BFeubYoC-ACiLkW8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VBQkmHi3iTQZG0saJY8djhVo16kMVdOhW2fEFKtGHqpbfjy8phYGF7RTJjnJ2fLa_-74DeGQ2ZgaNcn9aQjBj7qzEKt9KI7RwAQuzgijcl8NhMpmoUQWe9lwYRCySz7BBZoHl22W2pauypiTYibsD-kHMeRiUbK3v2RMKKbiIwn12u2qmaS-l7C3eoIruv6qnFMGjc_K_155C_YeF54328eUMKrg4h2PaHZbiyjVQLW-gVy-kvopeu2BBWe91NqeSXM5quTVUE93cI3Fp18Rrfbwt17PN-7wO4057_Nz1d7UQ_FnI443PnANZnmXIMeBGSxMlWjEt8iiX2i1aWRRpG2Zu-xUHwkY5i9EQRKiE5cwdmC-gulgu8BK8mLBFK3OFpPbHMZHcdW3CXBNrNtBXUCMXTFel2sV09_XXfz9-gKPueNCf9tNh7waOydllqtstVDfrLd7BYfbp3LK-LwbrC-w9lLY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+Identification%2C+Information+and+Knowledge+in+the+Internet+of+Things&rft.atitle=A+MapReduce+Enabled+Simulated+Annealing+Genetic+Algorithm&rft.au=Luokai+Hu&rft.au=Jin+Liu&rft.au=Chao+Liang&rft.au=Fuchuan+Ni&rft.date=2014-10-01&rft.pub=IEEE&rft.spage=252&rft.epage=255&rft_id=info:doi/10.1109%2FIIKI.2014.58&rft.externalDocID=7064040