Constant-Factor Approximation Algorithms for Convex Cover and Hidden Set in a Simple Polygon

Given a simple polygon P, the minimum convex cover problem seeks to cover P with the fewest convex polygons that lie within P. The maximum hidden set problem seeks to place within P a maximum cardinality set of points no two of which see each other. We give constant factor approximation algorithms f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS S. 1357 - 1365
Hauptverfasser: Browne, Reilly, Kasthurirangan, Prahlad Narasimham, Mitchell, Joseph S. B., Polishchuk, Valentin
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 06.11.2023
Schriftenreihe:Annual IEEE Symposium on Foundations of Computer Science
Schlagworte:
ISBN:9798350318944, 9798350318951
ISSN:2575-8454
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a simple polygon P, the minimum convex cover problem seeks to cover P with the fewest convex polygons that lie within P. The maximum hidden set problem seeks to place within P a maximum cardinality set of points no two of which see each other. We give constant factor approximation algorithms for both problems. Previously, the best approximation factor for the minimum convex cover was logarithmic; for the maximum hidden set problem, no approximation algorithm was known.
ISBN:9798350318944
9798350318951
ISSN:2575-8454
DOI:10.1109/FOCS57990.2023.00083