Constant-Factor Approximation Algorithms for Convex Cover and Hidden Set in a Simple Polygon

Given a simple polygon P, the minimum convex cover problem seeks to cover P with the fewest convex polygons that lie within P. The maximum hidden set problem seeks to place within P a maximum cardinality set of points no two of which see each other. We give constant factor approximation algorithms f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS s. 1357 - 1365
Hlavní autoři: Browne, Reilly, Kasthurirangan, Prahlad Narasimham, Mitchell, Joseph S. B., Polishchuk, Valentin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 06.11.2023
Edice:Annual IEEE Symposium on Foundations of Computer Science
Témata:
ISBN:9798350318944, 9798350318951
ISSN:2575-8454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a simple polygon P, the minimum convex cover problem seeks to cover P with the fewest convex polygons that lie within P. The maximum hidden set problem seeks to place within P a maximum cardinality set of points no two of which see each other. We give constant factor approximation algorithms for both problems. Previously, the best approximation factor for the minimum convex cover was logarithmic; for the maximum hidden set problem, no approximation algorithm was known.
ISBN:9798350318944
9798350318951
ISSN:2575-8454
DOI:10.1109/FOCS57990.2023.00083