Averaging covariance matrices for EEG signal classification based on the CSP: An empirical study
This paper presents an empirical comparison of covariance matrix averaging methods for EEG signal classification. Indeed, averaging EEG signal covariance matrices is a key step in designing brain-computer interfaces (BCI) based on the popular common spatial pattern (CSP) algorithm. BCI paradigms are...
Saved in:
| Published in: | 2015 23rd European Signal Processing Conference (EUSIPCO) pp. 2721 - 2725 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
EURASIP
01.08.2015
|
| Subjects: | |
| ISSN: | 2076-1465 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents an empirical comparison of covariance matrix averaging methods for EEG signal classification. Indeed, averaging EEG signal covariance matrices is a key step in designing brain-computer interfaces (BCI) based on the popular common spatial pattern (CSP) algorithm. BCI paradigms are typically structured into trials and we argue that this structure should be taken into account. Moreover, the non-Euclidean structure of covariance matrices should be taken into consideration as well. We review several approaches from the literature for averaging covariance matrices in CSP and compare them empirically on three publicly available datasets. Our results show that using Riemannian geometry for averaging covariance matrices improves performances for small dimensional problems, but also the limits of this approach when the dimensionality increases. |
|---|---|
| AbstractList | This paper presents an empirical comparison of covariance matrix averaging methods for EEG signal classification. Indeed, averaging EEG signal covariance matrices is a key step in designing brain-computer interfaces (BCI) based on the popular common spatial pattern (CSP) algorithm. BCI paradigms are typically structured into trials and we argue that this structure should be taken into account. Moreover, the non-Euclidean structure of covariance matrices should be taken into consideration as well. We review several approaches from the literature for averaging covariance matrices in CSP and compare them empirically on three publicly available datasets. Our results show that using Riemannian geometry for averaging covariance matrices improves performances for small dimensional problems, but also the limits of this approach when the dimensionality increases. |
| Author | Yger, Florian Sugiyama, Masashi Lotte, Fabien |
| Author_xml | – sequence: 1 givenname: Florian surname: Yger fullname: Yger, Florian organization: Dept. of Complexity Sci. & Eng., Univ. of Tokyo, Tokyo, Japan – sequence: 2 givenname: Fabien surname: Lotte fullname: Lotte, Fabien organization: Inria Bordeaux Sud-Ouest LaBRI, Talence, France – sequence: 3 givenname: Masashi surname: Sugiyama fullname: Sugiyama, Masashi organization: Dept. of Complexity Sci. & Eng., Univ. of Tokyo, Tokyo, Japan |
| BookMark | eNotkMtuwjAURN2qlUopX9Au_AOh10786g5FgSIhgURZU8e-oZbAQXGKxN83UlnNWcyZxTyTh9hGJOSNwZQxMO_VbrvclOspByamKpdcK3NHJkZpMIZryWWe35MRByUzVkjxRCYphRq4Bq0YyBH5nl2ws4cQD9S1F9sFGx3Sk-274DDRpu1oVS1oCodoj9Qd7eA3wdk-tJHWNqGnA_Q_SMvt5oPOIsXTOQzy0E79r7--kMfGHhNObjkmu3n1VX5mq_ViWc5WWeAF67MGfdFw5b3Iaw0gsHa1BAWgDRiEnDXcGJTeM0SrhZfc1cIKLTgYVwibj8nr_25AxP25CyfbXfe3T_I_ObZYPg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/EUSIPCO.2015.7362879 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9780992862633 0992862639 |
| EISSN | 2076-1465 |
| EndPage | 2725 |
| ExternalDocumentID | 7362879 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i241t-fed4f27dd53b8005ebcb607008909e031f299e6dd1eea85d62cb5a585209c45a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377943800546&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:54:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-fed4f27dd53b8005ebcb607008909e031f299e6dd1eea85d62cb5a585209c45a3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7362879 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 23rd European Signal Processing Conference (EUSIPCO) |
| PublicationTitleAbbrev | EUSIPCO |
| PublicationYear | 2015 |
| Publisher | EURASIP |
| Publisher_xml | – name: EURASIP |
| SSID | ssib028087106 ssib025355106 |
| Score | 1.8006779 |
| Snippet | This paper presents an empirical comparison of covariance matrix averaging methods for EEG signal classification. Indeed, averaging EEG signal covariance... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2721 |
| SubjectTerms | brain-computer interface (BCI) common spatial pattern Covariance matrices EEG signal classification Electroencephalography Europe Feature extraction Geometry Riemannian geometry robust averaging Signal processing SPD matrices Symmetric matrices |
| Title | Averaging covariance matrices for EEG signal classification based on the CSP: An empirical study |
| URI | https://ieeexplore.ieee.org/document/7362879 |
| WOSCitedRecordID | wos000377943800546&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioEJUIt4ywMjaV03jm22qkqBpUQqlboVx75IlehDff1-zm4oILGwWRmiyHfn77v47jtC7guveeZARyZWLIodx5BSkEeiMMyiSylgLgybkIOBGo91ViEPh14YAAjFZ9D0y3CX7xZ263-VtSSetkrqKqlKKfe9Wl--wwUC548bQ64YpgIsKbvl2ky30tHwJeu9-nIu0Sxf9WumSoCU_sn_PuaUNL5782h2QJ0zUoF5nbx30SPDvCFqFztMf70t6SzI78OaIjGlafpEfbGG-aDWM2ZfIhSsQj2QOYoL5IK0N8weaXdOYbacBvUQGgRoG2TUT996z1E5OyGaIiZvogJcXHDpnOjkyAkF5DZPMLyZ0kwDRnKBOASJc20Ao4RLuM2FwdyBM21jYTrnpDZfzOGCUA9umjtpBFJFAVJ1cuOQJSARUpZLeUnqfncmy708xqTcmKu_H1-TY2-AfQ3dDaltVlu4JUd2t5muV3fBpp-skaE0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSkBozf9uDRhVK2bNcbIasQETcBEm7YbWcTElkIX7_faVlREy_emj1sNp2ZvjfbmTeE3KdW88xA6ClfMs83HENKQuKJVDGNLiWBGTdsIuj15GgUxgXysOuFAQBXfAYVu3R3-Wam1_ZXWTXA01YG4R7ZF77Pa9turS_v4QKh88edIZcMkwHWyPvlaiysRsN-J2692YIuUclf9muqigOVp-P_fc4JKX9359F4hzunpABZibw30SfdxCGqZxtMgK016dQJ8MOSIjWlUfRMbbmG-qDacmZbJOTsQi2UGYoLZIO01Y8faTOjMJ1PnH4IdRK0ZTJ8igattpdPT_AmiMorLwXjpzwwRtQTZIUCEp00MMCZDFkIGMspIhE0jKkBKClMg-tEKMweOAu1L1T9jBSzWQbnhFp4C7kJlECyKCCQ9UQZ5AlIhaTmQXBBSnZ3xvOtQMY435jLvx_fkcP24LU77nZ6L1fkyBpjW1F3TYqrxRpuyIHerCbLxa2z7yc_yKR7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+23rd+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Averaging+covariance+matrices+for+EEG+signal+classification+based+on+the+CSP%3A+An+empirical+study&rft.au=Yger%2C+Florian&rft.au=Lotte%2C+Fabien&rft.au=Sugiyama%2C+Masashi&rft.date=2015-08-01&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=2721&rft.epage=2725&rft_id=info:doi/10.1109%2FEUSIPCO.2015.7362879&rft.externalDocID=7362879 |