CNP: An FPGA-based processor for Convolutional Networks

Convolutional networks (ConvNets) are biologically inspired hierarchical architectures that can be trained to perform a variety of detection, recognition and segmentation tasks. ConvNets have a feed-forward architecture consisting of multiple linear convolution filters interspersed with pointwise no...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Field-programmable Logic and Applications s. 32 - 37
Hlavní autoři: Farabet, C., Poulet, C., Han, J.Y., LeCun, Y.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2009
Témata:
ISSN:1946-147X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Convolutional networks (ConvNets) are biologically inspired hierarchical architectures that can be trained to perform a variety of detection, recognition and segmentation tasks. ConvNets have a feed-forward architecture consisting of multiple linear convolution filters interspersed with pointwise non-linear squashing functions. This paper presents an efficient implementation of ConvNets on a low-end DSP-oriented field programmable gate array (FPGA). The implementation exploits the inherent parallelism of ConvNets and takes full advantage of multiple hardware multiply accumulate units on the FPGA. The entire system uses a single FPGA with an external memory module, and no extra parts. A network compiler software was implemented, which takes a description of a trained ConvNet and compiles it into a sequence of instructions for the ConvNet Processor (CNP). A ConvNet face detection system was implemented and tested. Face detection on a 512 times 384 frame takes 100 ms (10 frames per second), which corresponds to an average performance of 3.4 times 10 9 connections per second for this 340 million connection network. The design can be used for low-power, lightweight embedded vision systems for micro-UAVs and other small robots.
AbstractList Convolutional networks (ConvNets) are biologically inspired hierarchical architectures that can be trained to perform a variety of detection, recognition and segmentation tasks. ConvNets have a feed-forward architecture consisting of multiple linear convolution filters interspersed with pointwise non-linear squashing functions. This paper presents an efficient implementation of ConvNets on a low-end DSP-oriented field programmable gate array (FPGA). The implementation exploits the inherent parallelism of ConvNets and takes full advantage of multiple hardware multiply accumulate units on the FPGA. The entire system uses a single FPGA with an external memory module, and no extra parts. A network compiler software was implemented, which takes a description of a trained ConvNet and compiles it into a sequence of instructions for the ConvNet Processor (CNP). A ConvNet face detection system was implemented and tested. Face detection on a 512 times 384 frame takes 100 ms (10 frames per second), which corresponds to an average performance of 3.4 times 10 9 connections per second for this 340 million connection network. The design can be used for low-power, lightweight embedded vision systems for micro-UAVs and other small robots.
Author Han, J.Y.
Farabet, C.
Poulet, C.
LeCun, Y.
Author_xml – sequence: 1
  givenname: C.
  surname: Farabet
  fullname: Farabet, C.
  organization: Courant Inst. of Math. Sci., New York Univ., New York, NY, USA
– sequence: 2
  givenname: C.
  surname: Poulet
  fullname: Poulet, C.
  organization: Courant Inst. of Math. Sci., New York Univ., New York, NY, USA
– sequence: 3
  givenname: J.Y.
  surname: Han
  fullname: Han, J.Y.
  organization: Perceptive Pixel Inc., New York, NY, USA
– sequence: 4
  givenname: Y.
  surname: LeCun
  fullname: LeCun, Y.
  organization: Courant Inst. of Math. Sci., New York Univ., New York, NY, USA
BookMark eNotj81Kw0AYRUdowf7tBTd5gcT5vvl3F4KpQqhZKLgrk2QGojFTMlHx7S3YC4ezO3DXZDGG0RFyAzQDoOaurKsMKTWZQIVCmCuyBo6cM21QLsgKDJcpcPV2TXYxvtPzBFdayBVRxaG-T_IxKet9njY2ui45TaF1MYYp8WeKMH6H4Wvuw2iH5ODmnzB9xC1ZejtEt7t4Q17Lh5fiMa2e909FXqU9cphTpzrbdNA0WiAVwIwEK6gToLX0DL0FtC0FkL4T4BhqqhrTCq9ajZ2nlm3I7X-3d84dT1P_aaff4-Un-wO220a3
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FPL.2009.5272559
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424438926
9781424438921
EndPage 37
ExternalDocumentID 5272559
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-e7dabd1bb8520513961a50e51886f32fa12ac0116fd51e32807b9c5f7c82df0a3
IEDL.DBID RIE
ISICitedReferencesCount 230
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000277506300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1946-147X
IngestDate Wed Aug 27 02:24:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-e7dabd1bb8520513961a50e51886f32fa12ac0116fd51e32807b9c5f7c82df0a3
PageCount 6
ParticipantIDs ieee_primary_5272559
PublicationCentury 2000
PublicationDate 2009-08
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08
PublicationDecade 2000
PublicationTitle International Conference on Field-programmable Logic and Applications
PublicationTitleAbbrev FPL
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000547856
Score 1.8427147
Snippet Convolutional networks (ConvNets) are biologically inspired hierarchical architectures that can be trained to perform a variety of detection, recognition and...
SourceID ieee
SourceType Publisher
StartPage 32
SubjectTerms Cameras
Convolution
Face detection
Feedforward systems
Field programmable gate arrays
Filters
Hardware
Machine vision
Navigation
Robot vision systems
Title CNP: An FPGA-based processor for Convolutional Networks
URI https://ieeexplore.ieee.org/document/5272559
WOSCitedRecordID wos000277506300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MnlU38JgePxrVp2iTexrB6GKUHld1GPmEg3di6_f0mbZ0IXryFQEIeSfi9z98DuBfGOaF4hLWgEaaOJVhZKrHHChlq9oxsWrJ8zFhR8PlclD14ONTCWGub5DP7GIZNLN-s9C64ysYpYUED7kOfsayt1Tr4U6JATNU0a_VmeYZjyubfUclIjPNy1nJTdlv86qXSQEl-8r9DnMLopyYPlQe0OYOerYbApkX5hCYVysuXCQ6IZNC6Tf1fbZDXR5Ffve9el_xERZv0vR3Be_78Nn3FXSsEvPQQW2PLjFQmVoqnxH-jRGSxTCMb2NQylxAnYyJ1iKk4k8Y2CRQ3SujUMc2JcZFMzmFQrSp7AYgoamzqFKUy2GaOc8OYJqn00M0VyS5hGIRerFu2i0Un79Xf09dw3MZXQkrcDQzqzc7ewpHe18vt5q65oi82NI9K
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKehJZRN_m4NH49q0aVJvY1gn1tLDlN1G0iQwGN3Yr7_fpK0TwYu3EEhISML3Xt573wdwHytjYsk9XMShh0PDAix1KLDFCuFq9pSoJFk-U5ZlfDyO8xY87GphtNZV8pl-dM0qlq_mxcZ9lfUoYc4C3oN9p5zVVGvtflQ8R01VybVaxzzCfsjG33FJL-4leVqzUzaT_FJTqcAkOf7fMk6g-1OVh_Id3pxCS5cdYIMsf0L9EiX5Sx87TFJoUSf_z5fIWqTIjt4290vMUFanfa-68JE8jwZD3Igh4KkF2TXWTAmpfCk5JfYhBXHkC-ppx6cWmYAY4RNRuKiKUdTXgSO5kXFBDSs4UcYTwRm0y3mpzwERGSpNjQxD4bwzw7lirCBUWPDmkkQX0HGbnixqvotJs9_Lv7vv4HA4ek8n6Wv2dgVHdbTFJchdQ3u93OgbOCi26-lqeVsd1xfjp5KT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Field-programmable+Logic+and+Applications&rft.atitle=CNP%3A+An+FPGA-based+processor+for+Convolutional+Networks&rft.au=Farabet%2C+C.&rft.au=Poulet%2C+C.&rft.au=Han%2C+J.Y.&rft.au=LeCun%2C+Y.&rft.date=2009-08-01&rft.pub=IEEE&rft.issn=1946-147X&rft.spage=32&rft.epage=37&rft_id=info:doi/10.1109%2FFPL.2009.5272559&rft.externalDocID=5272559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-147X&client=summon