Fully Convolutional Instance-Aware Semantic Segmentation
We present the first fully convolutional end-to-end solution for instance-aware semantic segmentation task. It inherits all the merits of FCNs for semantic segmentation [29] and instance mask proposal [5]. It performs instance mask prediction and classification jointly. The underlying convolutional...
Uloženo v:
| Vydáno v: | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 4438 - 4446 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2017
|
| Témata: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present the first fully convolutional end-to-end solution for instance-aware semantic segmentation task. It inherits all the merits of FCNs for semantic segmentation [29] and instance mask proposal [5]. It performs instance mask prediction and classification jointly. The underlying convolutional representation is fully shared between the two sub-tasks, as well as between all regions of interest. The network architecture is highly integrated and efficient. It achieves state-of-the-art performance in both accuracy and efficiency. It wins the COCO 2016 segmentation competition by a large margin. Code would be released at https://github.com/daijifeng001/TA-FCN. |
|---|---|
| ISSN: | 1063-6919 1063-6919 |
| DOI: | 10.1109/CVPR.2017.472 |