Leveraging the web context for context-sensitive opinion mining

Existing automated opinion mining methods either employ a static lexicon-based approach or a supervised learning approach. Nevertheless, the former method often fails to identify context-sensitive semantics of the opinion words, and the latter approach requires a large number of human labeled traini...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2009 2nd IEEE International Conference on Computer Science and Information Technology s. 467 - 471
Hlavní autoři: Lau, R.Y.K., Lai, C.L., Yuefeng Li
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.01.2009
Témata:
ISBN:1424445191, 9781424445196
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Existing automated opinion mining methods either employ a static lexicon-based approach or a supervised learning approach. Nevertheless, the former method often fails to identify context-sensitive semantics of the opinion words, and the latter approach requires a large number of human labeled training examples. The main contribution of this paper is the illustration of a novel opinion mining method underpinned by context-sensitive text mining and inferential language modeling to improve the effectiveness of opinion mining. Our initial experiments show that the proposed the inferential opinion mining method outperforms the purely lexicon-based opinion finding method in terms of several benchmark measures. Our research opens the door to the development of more effective opinion mining method to discover business intelligence from the Web knowledge base.
ISBN:1424445191
9781424445196
DOI:10.1109/ICCSIT.2009.5234821