Network intrusion detection using fuzzy class association rule mining based on genetic network programming

Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network intrusions effectively becomes an important techniques. This paper presents a novel fuzzy class association rule mining method based on Genetic Ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 IEEE International Conference on Systems, Man and Cybernetics S. 60 - 67
Hauptverfasser: Ci Chen, Mabu, S., Chuan Yue, Shimada, K., Hirasawa, K.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2009
Schlagworte:
ISBN:9781424427932, 1424427932
ISSN:1062-922X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network intrusions effectively becomes an important techniques. This paper presents a novel fuzzy class association rule mining method based on Genetic Network Programming (GNP) for detecting network intrusions. GNP is an evolutionary optimization techniques, which uses directed graph structures as genes instead of strings (Genetic Algorithm) or trees (Genetic Programming), leading to creating compact programs and implicitly memorizing past action sequences. By combining fuzzy set theory with GNP, the proposed method can deal with the mixed database which contains both discrete and continuous attributes. And it can be flexibly applied to both misuse and anomaly detection in Network Intrusion Detection Problem. Experimental results with KDD99Cup and DAPRA98 databases from MIT Lincoln Laboratory show that the proposed method provides a competitively high detection rate compared with other machine learning techniques.
AbstractList Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network intrusions effectively becomes an important techniques. This paper presents a novel fuzzy class association rule mining method based on Genetic Network Programming (GNP) for detecting network intrusions. GNP is an evolutionary optimization techniques, which uses directed graph structures as genes instead of strings (Genetic Algorithm) or trees (Genetic Programming), leading to creating compact programs and implicitly memorizing past action sequences. By combining fuzzy set theory with GNP, the proposed method can deal with the mixed database which contains both discrete and continuous attributes. And it can be flexibly applied to both misuse and anomaly detection in Network Intrusion Detection Problem. Experimental results with KDD99Cup and DAPRA98 databases from MIT Lincoln Laboratory show that the proposed method provides a competitively high detection rate compared with other machine learning techniques.
Author Mabu, S.
Ci Chen
Hirasawa, K.
Chuan Yue
Shimada, K.
Author_xml – sequence: 1
  surname: Ci Chen
  fullname: Ci Chen
  organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan
– sequence: 2
  givenname: S.
  surname: Mabu
  fullname: Mabu, S.
  organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan
– sequence: 3
  surname: Chuan Yue
  fullname: Chuan Yue
  organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan
– sequence: 4
  givenname: K.
  surname: Shimada
  fullname: Shimada, K.
  organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan
– sequence: 5
  givenname: K.
  surname: Hirasawa
  fullname: Hirasawa, K.
  organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan
BookMark eNpVUMtOwzAQNKKVaEt_AC7-gZS14_hxRBGPSgUOgMStsuNt5NI6VZwKtV9PgF44rHZmd3ak2TEZxCYiIVcMZoyBuZmXr0_ljAOYWZELmXN9RqZGaSa4EFwZYc7_8ZwPyIiB5Jnh_GNIxv2pNiClhgsyTmkNwEEwPSLrZ-y-mvaThti1-xSaSD12WHU_qOexpqv98Xig1camRPtqqmB_t-1-g3Qb4o_G2YSe9sMaI3ahovFku2uburXbXlZfkuHKbhJOT31C3u_v3srHbPHyMC9vF1nggnWZc6CcFVKBAygU136lFEclZZ_PS-0lYm5NBSg8c7qQRlcsd85rNNrZIp-Q6z_fgIjLXRu2tj0sT3_LvwGj7mGf
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICSMC.2009.5346328
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 9781424427949
1424427940
EndPage 67
ExternalDocumentID 5346328
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i241t-bb07ba4670b005728df772e766781d68d6ee3a9c0e4d1b85698c13bbd8e98ba53
IEDL.DBID RIE
ISBN 9781424427932
1424427932
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000279574600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1062-922X
IngestDate Wed Aug 27 02:45:57 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCN 2008906680
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-bb07ba4670b005728df772e766781d68d6ee3a9c0e4d1b85698c13bbd8e98ba53
PageCount 8
ParticipantIDs ieee_primary_5346328
PublicationCentury 2000
PublicationDate 2009-10
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10
PublicationDecade 2000
PublicationTitle 2009 IEEE International Conference on Systems, Man and Cybernetics
PublicationTitleAbbrev ICSMC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
ssj0000453104
Score 1.7639555
Snippet Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network...
SourceID ieee
SourceType Publisher
StartPage 60
SubjectTerms Association rules
class association rule mining
Computer security
Data mining
Economic indicators
fuzzy membership function
Genetic algorithms
Genetic Network Programming
Genetic programming
Internet
Intrusion detection
network intrusion detection
Tree graphs
Title Network intrusion detection using fuzzy class association rule mining based on genetic network programming
URI https://ieeexplore.ieee.org/document/5346328
WOSCitedRecordID wos000279574600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8aAX7UN8k4MHBWM32UeSc7EoaCn4oLeSbGZLRbfSh2B_vUl22yp48bYbwu4ymew3Sb5vBqHzjCkHTCkJWaBIFIWcSJVkhFPFhaZKRb5o38s97_XEYCD7FXS11sIAgCefwbW79Gf5ZpIu3FZZOw6jJGSiiqqc80Krtd5PsaFJ6JcW5WIriGghg0sYkYwNVqIuZh2SrXI9re5XappAtu86jw-dIo9l-bpfdVc87HR3__fBe6i10e_h_hqZ6qgCeQPt_Eg92ED1clLP8EWZefqyiV57BSkcj3OnxbBDhg3MPVkrx44hP8LZYrn8wqmLubHaDC2eLt4Av_tqE9gho8G20Tqn00jivHxsSQaz3UYt9Ny9eerckrIYAxlbkJ8TrQOulf2tBm7iciZMZgNz4IlFO2oSYRKAUMk0gMhQLeJEipSGWhsBUmgVh_uolk9yOECYpgq0XXdpCsbGi1KbTEYZlxDEmnEwh6jpTDn8KPJtDEsrHv3dfIy2_QmPJ9idoJq1D5yirfRzPp5Nz7yTfAOaurgU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSLb3ybgwcFq02aNsl5URTXRfDB3pakmS4rWkV3BffXm6TdVcGLtzaEtkwm_SbJ980AHBRMe2DKo4TFOuI8EZHSWREJqoU0VGseivY9tES7LTsddTMFxxMtDCIG8hme-Mtwlm9f8qHfKjtNE54lTE7DTMo5o5Vaa7Kj4oKTJCwu6uVWzGklhMtYpBjrjGVdzLkkG2d7Gt-P9TSxOr1s3l43q0yW9Qt_VV4JwHO--L9PXoK1bwUfuZlg0zJMYbkCCz-SD67Acj2t38lhnXv6aBUe2xUtnPRLr8Zwg0YsDgJdqySeI98jxXA0-iS5j7qJ_h5c8jZ8QvIc6k0Qj42WuEbnnl4lScr6sTUdzHXrrcH9-dld8yKqyzFEfQfzg8iYWBjtfqyxn7qCSVu40BxF5vCO2kzaDDHRKo-RW2pkmimZ08QYK1FJo9NkHRrlS4kbQGiu0biVl6FoXcSojC0UL4TCODVMoN2EVW_K7muVcaNbW3Hr7-Z9mLu4u251W5ftq22YD-c9gW63Aw1nK9yF2fxj0H9_2wsO8wVdC7tb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Systems%2C+Man+and+Cybernetics&rft.atitle=Network+intrusion+detection+using+fuzzy+class+association+rule+mining+based+on+genetic+network+programming&rft.au=Ci+Chen&rft.au=Mabu%2C+S.&rft.au=Chuan+Yue&rft.au=Shimada%2C+K.&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424427932&rft.issn=1062-922X&rft.spage=60&rft.epage=67&rft_id=info:doi/10.1109%2FICSMC.2009.5346328&rft.externalDocID=5346328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-922X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-922X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-922X&client=summon