Network intrusion detection using fuzzy class association rule mining based on genetic network programming
Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network intrusions effectively becomes an important techniques. This paper presents a novel fuzzy class association rule mining method based on Genetic Ne...
Gespeichert in:
| Veröffentlicht in: | 2009 IEEE International Conference on Systems, Man and Cybernetics S. 60 - 67 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.10.2009
|
| Schlagworte: | |
| ISBN: | 9781424427932, 1424427932 |
| ISSN: | 1062-922X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network intrusions effectively becomes an important techniques. This paper presents a novel fuzzy class association rule mining method based on Genetic Network Programming (GNP) for detecting network intrusions. GNP is an evolutionary optimization techniques, which uses directed graph structures as genes instead of strings (Genetic Algorithm) or trees (Genetic Programming), leading to creating compact programs and implicitly memorizing past action sequences. By combining fuzzy set theory with GNP, the proposed method can deal with the mixed database which contains both discrete and continuous attributes. And it can be flexibly applied to both misuse and anomaly detection in Network Intrusion Detection Problem. Experimental results with KDD99Cup and DAPRA98 databases from MIT Lincoln Laboratory show that the proposed method provides a competitively high detection rate compared with other machine learning techniques. |
|---|---|
| AbstractList | Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network intrusions effectively becomes an important techniques. This paper presents a novel fuzzy class association rule mining method based on Genetic Network Programming (GNP) for detecting network intrusions. GNP is an evolutionary optimization techniques, which uses directed graph structures as genes instead of strings (Genetic Algorithm) or trees (Genetic Programming), leading to creating compact programs and implicitly memorizing past action sequences. By combining fuzzy set theory with GNP, the proposed method can deal with the mixed database which contains both discrete and continuous attributes. And it can be flexibly applied to both misuse and anomaly detection in Network Intrusion Detection Problem. Experimental results with KDD99Cup and DAPRA98 databases from MIT Lincoln Laboratory show that the proposed method provides a competitively high detection rate compared with other machine learning techniques. |
| Author | Mabu, S. Ci Chen Hirasawa, K. Chuan Yue Shimada, K. |
| Author_xml | – sequence: 1 surname: Ci Chen fullname: Ci Chen organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan – sequence: 2 givenname: S. surname: Mabu fullname: Mabu, S. organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan – sequence: 3 surname: Chuan Yue fullname: Chuan Yue organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan – sequence: 4 givenname: K. surname: Shimada fullname: Shimada, K. organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan – sequence: 5 givenname: K. surname: Hirasawa fullname: Hirasawa, K. organization: Grad. Sch. of Inf., Production & Syst., Waseda Univ., Fukuoka, Japan |
| BookMark | eNpVUMtOwzAQNKKVaEt_AC7-gZS14_hxRBGPSgUOgMStsuNt5NI6VZwKtV9PgF44rHZmd3ak2TEZxCYiIVcMZoyBuZmXr0_ljAOYWZELmXN9RqZGaSa4EFwZYc7_8ZwPyIiB5Jnh_GNIxv2pNiClhgsyTmkNwEEwPSLrZ-y-mvaThti1-xSaSD12WHU_qOexpqv98Xig1camRPtqqmB_t-1-g3Qb4o_G2YSe9sMaI3ahovFku2uburXbXlZfkuHKbhJOT31C3u_v3srHbPHyMC9vF1nggnWZc6CcFVKBAygU136lFEclZZ_PS-0lYm5NBSg8c7qQRlcsd85rNNrZIp-Q6z_fgIjLXRu2tj0sT3_LvwGj7mGf |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICSMC.2009.5346328 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISBN | 9781424427949 1424427940 |
| EndPage | 67 |
| ExternalDocumentID | 5346328 |
| Genre | orig-research |
| GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i241t-bb07ba4670b005728df772e766781d68d6ee3a9c0e4d1b85698c13bbd8e98ba53 |
| IEDL.DBID | RIE |
| ISBN | 9781424427932 1424427932 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000279574600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1062-922X |
| IngestDate | Wed Aug 27 02:45:57 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| LCCN | 2008906680 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-bb07ba4670b005728df772e766781d68d6ee3a9c0e4d1b85698c13bbd8e98ba53 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_5346328 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-10 |
| PublicationDateYYYYMMDD | 2009-10-01 |
| PublicationDate_xml | – month: 10 year: 2009 text: 2009-10 |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 IEEE International Conference on Systems, Man and Cybernetics |
| PublicationTitleAbbrev | ICSMC |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020418 ssj0000453104 |
| Score | 1.7639555 |
| Snippet | Computer systems are exposed to an increasing number and type of security threats due to the expanding of Internet in recent years. How to detect network... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 60 |
| SubjectTerms | Association rules class association rule mining Computer security Data mining Economic indicators fuzzy membership function Genetic algorithms Genetic Network Programming Genetic programming Internet Intrusion detection network intrusion detection Tree graphs |
| Title | Network intrusion detection using fuzzy class association rule mining based on genetic network programming |
| URI | https://ieeexplore.ieee.org/document/5346328 |
| WOSCitedRecordID | wos000279574600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8aAX7UN8k4MHBWM32UeSc7EoaCn4oLeSbGZLRbfSh2B_vUl22yp48bYbwu4ymew3Sb5vBqHzjCkHTCkJWaBIFIWcSJVkhFPFhaZKRb5o38s97_XEYCD7FXS11sIAgCefwbW79Gf5ZpIu3FZZOw6jJGSiiqqc80Krtd5PsaFJ6JcW5WIriGghg0sYkYwNVqIuZh2SrXI9re5XappAtu86jw-dIo9l-bpfdVc87HR3__fBe6i10e_h_hqZ6qgCeQPt_Eg92ED1clLP8EWZefqyiV57BSkcj3OnxbBDhg3MPVkrx44hP8LZYrn8wqmLubHaDC2eLt4Av_tqE9gho8G20Tqn00jivHxsSQaz3UYt9Ny9eerckrIYAxlbkJ8TrQOulf2tBm7iciZMZgNz4IlFO2oSYRKAUMk0gMhQLeJEipSGWhsBUmgVh_uolk9yOECYpgq0XXdpCsbGi1KbTEYZlxDEmnEwh6jpTDn8KPJtDEsrHv3dfIy2_QmPJ9idoJq1D5yirfRzPp5Nz7yTfAOaurgU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSLb3ybgwcFq02aNsl5URTXRfDB3pakmS4rWkV3BffXm6TdVcGLtzaEtkwm_SbJ980AHBRMe2DKo4TFOuI8EZHSWREJqoU0VGseivY9tES7LTsddTMFxxMtDCIG8hme-Mtwlm9f8qHfKjtNE54lTE7DTMo5o5Vaa7Kj4oKTJCwu6uVWzGklhMtYpBjrjGVdzLkkG2d7Gt-P9TSxOr1s3l43q0yW9Qt_VV4JwHO--L9PXoK1bwUfuZlg0zJMYbkCCz-SD67Acj2t38lhnXv6aBUe2xUtnPRLr8Zwg0YsDgJdqySeI98jxXA0-iS5j7qJ_h5c8jZ8QvIc6k0Qj42WuEbnnl4lScr6sTUdzHXrrcH9-dld8yKqyzFEfQfzg8iYWBjtfqyxn7qCSVu40BxF5vCO2kzaDDHRKo-RW2pkmimZ08QYK1FJo9NkHRrlS4kbQGiu0biVl6FoXcSojC0UL4TCODVMoN2EVW_K7muVcaNbW3Hr7-Z9mLu4u251W5ftq22YD-c9gW63Aw1nK9yF2fxj0H9_2wsO8wVdC7tb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Systems%2C+Man+and+Cybernetics&rft.atitle=Network+intrusion+detection+using+fuzzy+class+association+rule+mining+based+on+genetic+network+programming&rft.au=Ci+Chen&rft.au=Mabu%2C+S.&rft.au=Chuan+Yue&rft.au=Shimada%2C+K.&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424427932&rft.issn=1062-922X&rft.spage=60&rft.epage=67&rft_id=info:doi/10.1109%2FICSMC.2009.5346328&rft.externalDocID=5346328 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-922X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-922X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-922X&client=summon |

