Geodesic flow kernel for unsupervised domain adaptation

In real-world applications of visual recognition, many factors - such as pose, illumination, or image quality - can cause a significant mismatch between the source domain on which classifiers are trained and the target domain to which those classifiers are applied. As such, the classifiers often per...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 IEEE Conference on Computer Vision and Pattern Recognition s. 2066 - 2073
Hlavní autoři: Boqing Gong, Yuan Shi, Fei Sha, Grauman, K.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2012
Témata:
ISBN:9781467312264, 1467312266
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In real-world applications of visual recognition, many factors - such as pose, illumination, or image quality - can cause a significant mismatch between the source domain on which classifiers are trained and the target domain to which those classifiers are applied. As such, the classifiers often perform poorly on the target domain. Domain adaptation techniques aim to correct the mismatch. Existing approaches have concentrated on learning feature representations that are invariant across domains, and they often do not directly exploit low-dimensional structures that are intrinsic to many vision datasets. In this paper, we propose a new kernel-based method that takes advantage of such structures. Our geodesic flow kernel models domain shift by integrating an infinite number of subspaces that characterize changes in geometric and statistical properties from the source to the target domain. Our approach is computationally advantageous, automatically inferring important algorithmic parameters without requiring extensive cross-validation or labeled data from either domain. We also introduce a metric that reliably measures the adaptability between a pair of source and target domains. For a given target domain and several source domains, the metric can be used to automatically select the optimal source domain to adapt and avoid less desirable ones. Empirical studies on standard datasets demonstrate the advantages of our approach over competing methods.
AbstractList In real-world applications of visual recognition, many factors - such as pose, illumination, or image quality - can cause a significant mismatch between the source domain on which classifiers are trained and the target domain to which those classifiers are applied. As such, the classifiers often perform poorly on the target domain. Domain adaptation techniques aim to correct the mismatch. Existing approaches have concentrated on learning feature representations that are invariant across domains, and they often do not directly exploit low-dimensional structures that are intrinsic to many vision datasets. In this paper, we propose a new kernel-based method that takes advantage of such structures. Our geodesic flow kernel models domain shift by integrating an infinite number of subspaces that characterize changes in geometric and statistical properties from the source to the target domain. Our approach is computationally advantageous, automatically inferring important algorithmic parameters without requiring extensive cross-validation or labeled data from either domain. We also introduce a metric that reliably measures the adaptability between a pair of source and target domains. For a given target domain and several source domains, the metric can be used to automatically select the optimal source domain to adapt and avoid less desirable ones. Empirical studies on standard datasets demonstrate the advantages of our approach over competing methods.
Author Yuan Shi
Fei Sha
Grauman, K.
Boqing Gong
Author_xml – sequence: 1
  surname: Boqing Gong
  fullname: Boqing Gong
  email: boqinggo@usc.edu
  organization: Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA
– sequence: 2
  surname: Yuan Shi
  fullname: Yuan Shi
  email: yuanshi@usc.edu
  organization: Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA
– sequence: 3
  surname: Fei Sha
  fullname: Fei Sha
  email: feisha@usc.edu
  organization: Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA
– sequence: 4
  givenname: K.
  surname: Grauman
  fullname: Grauman, K.
  email: grauman@cs.utexas.edu
  organization: Dept. of Comput. Sci., Univ. of Texas at Austin, Austin, TX, USA
BookMark eNpNkFFLwzAUhaNOcJv9AeJL_0BrbpImzaMUN4WBIurruGtuINq1pekU_70FJ3jgcB6-w3k4CzZru5YYuwKeA3B7U709PeeCg8i1UMYCnLAFKG0kCFGKUzYHrmWmLdgzllhT_jGtZv_YBUtifOeTpga3Ys7MmjpHMdSpb7qv9IOGlprUd0N6aOOhp-EzRHKp6_YY2hQd9iOOoWsv2bnHJlJyzCV7Xd29VPfZ5nH9UN1usiAUjNkOjffGFb7kjkslSUxWWIOubVkicIlFoUoDhBzJKwFmZ3k9gRqccEIu2fXvbiCibT-EPQ7f2-MH8gckBkzz
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2012.6247911
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467312282
1467312274
9781467312271
9781467312288
EISSN 1063-6919
EndPage 2073
ExternalDocumentID 6247911
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-ba7ff7d5f80d0343e243e4ac16c988a103a554871ea0aef4217b90ca10c1d2d23
IEDL.DBID RIE
ISBN 9781467312264
1467312266
ISICitedReferencesCount 1818
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309166202029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 04:27:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-ba7ff7d5f80d0343e243e4ac16c988a103a554871ea0aef4217b90ca10c1d2d23
PageCount 8
ParticipantIDs ieee_primary_6247911
PublicationCentury 2000
PublicationDate 2012-06
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06
PublicationDecade 2010
PublicationTitle 2012 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781092
ssj0023720
ssj0003211698
Score 2.4932895
Snippet In real-world applications of visual recognition, many factors - such as pose, illumination, or image quality - can cause a significant mismatch between the...
SourceID ieee
SourceType Publisher
StartPage 2066
SubjectTerms Kernel
Manifolds
Measurement
Principal component analysis
Training
Vectors
Visualization
Title Geodesic flow kernel for unsupervised domain adaptation
URI https://ieeexplore.ieee.org/document/6247911
WOSCitedRecordID wos000309166202029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcBUoEW85YGRtEns-jFXFAZUVQiqbpVjX6SKklRtA3-fc5IGIbEwRIovyjm6OLk7f_cg5C71VcggGQYpLpiACxUGiusEvVZrU8aEU2UQzexZTiZqPtfTFrlvcmEAoAw-g74_LbF8l9vCb5UNRMyl9om8B1KKKler2U_xRWvCGiH0Y4aejdANohD7biwl8ilYIHSkyyQvIVmE9ofY136qx7yGP5HhYDSbvvgIsLhfz_6rDUuphcad_z3_Men9pPPRaaOoTkgLslPSqe1PWn_dWyTtWzzsaV0iHyF3gG-Spqv8i77DJoMVRUOXFtm2WPsfzRZ5uPzDLDNqnFlX0H6PvI0fXkdPQd1rIViiDt8FiZFpKt0wVaELGWcQ48GNjYTVSpkoZGbonZsITGgg5ejJJDq0eMFGLnYxOyPtLM_gnNAE4kRDJAS3gM6mSpAhGgI6UjbGO-UF6XrRLNZVOY1FLZXLv8lX5MhLv4rOuibt3aaAG3JoP3fL7ea2XAPfaDinsw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8ImugTKhi_3YOPDra2dO0zETEiIQYJb6RrbwkRNwJM_32vY2BMfPFhSXvNblnb7e76uw9C7hKXhQzitp_ghvG5kIEvuYrRajUmYUxYWTjRjPvRYCAnEzWskPtdLAwAFM5n0HTNAsu3mcndUVlLUB4pF8i71-acBptord2JiktbE5QYoesztG2E2mEK1NVjKbBPwXyhQlWEeYmIhaiBiG32p7LPSwAUGbY64-Gr8wGjzfL5vwqxFHKoW_vfGxyRxk9AnzfciapjUoH0hNRKDdQrv-8VkrZFHra0OokeIbOAa-kl8-zLe4dlCnMPVV0vT1f5wv1qVsjDZh96lnra6sUG3G-Qt-7DqNPzy2oL_gyl-NqPdZQkkW0nMrAB4wwoXlybUBglpQ4DptvOvAlBBxoSjrZMrAKDAya01FJ2SqpplsIZ8WKgsYJQCG4AzU0ZI0NUBVQoDcU7o3NSd1MzXWwSakzLWbn4m3xLDnqjl_60_zR4viSHbiU2vlpXpLpe5nBN9s3nerZa3hT74RtZwar6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Geodesic+flow+kernel+for+unsupervised+domain+adaptation&rft.au=Boqing+Gong&rft.au=Yuan+Shi&rft.au=Fei+Sha&rft.au=Grauman%2C+K.&rft.date=2012-06-01&rft.pub=IEEE&rft.isbn=9781467312264&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=2066&rft.epage=2073&rft_id=info:doi/10.1109%2FCVPR.2012.6247911&rft.externalDocID=6247911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon