Face illumination normalization on large and small scale features

It is well known that the effect of illumination is mainly on the large-scale features (low-frequency components) of a face image. In solving the illumination problem for face recognition, most (if not all) existing methods either only use extracted small-scale features while discard large-scale fea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 IEEE Conference on Computer Vision and Pattern Recognition s. 1 - 8
Hlavní autoři: Xiaohua Xie, Wei-Shi Zheng, Jianhuang Lai, Yuen, P.C.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2008
Témata:
ISBN:9781424422425, 1424422426
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is well known that the effect of illumination is mainly on the large-scale features (low-frequency components) of a face image. In solving the illumination problem for face recognition, most (if not all) existing methods either only use extracted small-scale features while discard large-scale features, or perform normalization on the whole image. In the latter case, small-scale features may be distorted when the large-scale features are modified. In this paper, we argue that large-scale features of face image are important and contain useful information for face recognition as well as visual quality of normalized image. Moreover, this paper suggests that illumination normalization should mainly perform on large-scale features of face image rather than the whole face image. Along this line, a novel framework for face illumination normalization is proposed. In this framework, a single face image is first decomposed into large- and small- scale feature images using logarithmic total variation (LTV) model. After that, illumination normalization is performed on large-scale feature image while small-scale feature image is smoothed. Finally, a normalized face image is generated by combination of the normalized large-scale feature image and smoothed small-scale feature image. CMU PIE and (Extended) YaleB face databases with different illumination variations are used for evaluation and the experimental results show that the proposed method outperforms existing methods.
AbstractList It is well known that the effect of illumination is mainly on the large-scale features (low-frequency components) of a face image. In solving the illumination problem for face recognition, most (if not all) existing methods either only use extracted small-scale features while discard large-scale features, or perform normalization on the whole image. In the latter case, small-scale features may be distorted when the large-scale features are modified. In this paper, we argue that large-scale features of face image are important and contain useful information for face recognition as well as visual quality of normalized image. Moreover, this paper suggests that illumination normalization should mainly perform on large-scale features of face image rather than the whole face image. Along this line, a novel framework for face illumination normalization is proposed. In this framework, a single face image is first decomposed into large- and small- scale feature images using logarithmic total variation (LTV) model. After that, illumination normalization is performed on large-scale feature image while small-scale feature image is smoothed. Finally, a normalized face image is generated by combination of the normalized large-scale feature image and smoothed small-scale feature image. CMU PIE and (Extended) YaleB face databases with different illumination variations are used for evaluation and the experimental results show that the proposed method outperforms existing methods.
Author Yuen, P.C.
Xiaohua Xie
Jianhuang Lai
Wei-Shi Zheng
Author_xml – sequence: 1
  surname: Xiaohua Xie
  fullname: Xiaohua Xie
  organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou
– sequence: 2
  surname: Wei-Shi Zheng
  fullname: Wei-Shi Zheng
  organization: Sch. of Math. & Comput. Sci., Sun Yat-sen Univ., Guangzhou
– sequence: 3
  surname: Jianhuang Lai
  fullname: Jianhuang Lai
– sequence: 4
  givenname: P.C.
  surname: Yuen
  fullname: Yuen, P.C.
BookMark eNpVkM1KxDAURqOO4Dj2AcRNXqA1_02WQ3FUGFBE3Q63aSKRNJWms9CntzCz0MsHh49zuYt7iRZpSA6ha0oqSom5bd6fXypGiK6E1LWm9AQVZqZgQjAmODtFS0oUL5Wh5uyfY3Lxx12gIudPMo-QXFG1ROsNWIdDjPs-JJjCkHAaxh5i-Dm0ORHGD4chdTjPIuJsITrsHUz70eUrdO4hZlccuUJvm7vX5qHcPt0_NuttGZigUwlAoLWSt4R6pRVnHdWMAO-sYp00XBortffEGu1bLnjHaqWoJfW84bRr-QrdHO4G59zuaww9jN-740P4L2TNUTU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2008.4587811
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424422432
1424422434
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4587811
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-aa0abc53b01f68632d1820a3dc62d59359c58ff0c98fb343d27661c073dce8eb3
IEDL.DBID RIE
ISBN 9781424422425
1424422426
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259736803047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 02:16:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-aa0abc53b01f68632d1820a3dc62d59359c58ff0c98fb343d27661c073dce8eb3
PageCount 8
ParticipantIDs ieee_primary_4587811
PublicationCentury 2000
PublicationDate 2008-06
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06
PublicationDecade 2000
PublicationTitle 2008 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453616
ssj0023720
ssj0003211698
Score 1.907184
Snippet It is well known that the effect of illumination is mainly on the large-scale features (low-frequency components) of a face image. In solving the illumination...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Discrete wavelet transforms
Face recognition
Feature extraction
Image generation
Independent component analysis
Large-scale systems
Lighting
Linear discriminant analysis
Principal component analysis
Sun
Title Face illumination normalization on large and small scale features
URI https://ieeexplore.ieee.org/document/4587811
WOSCitedRecordID wos000259736803047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4OnqZv4TQ4erVuTNk2OMhyexhCV3Ua-CoXRybr59_vSphXBi9BD80ppSdq8z9_7AdwbKnRiNXonTKVRIlkcCfSaIxGbHO3_PMnyhmwiWyzEaiWXPXjosDDOubr4zD360zqXb7fm4ENlkyQVHhjZh36W8Qar1cVT0DRhPJg6fszQs-GyyyhQz8ZSZz45i7iMZQvyol5Htb2fwjgN6c94Kiezj-VrU3IZnv6LhqXWQvPh_97_BMY_cD6y7BTVKfRceQbDYH-S8HdXKGopHlrZCJ7mCm8uPB1y0cQNSemt3E2AbxI8Nr6YnKjSkgovbEiFy-5I7uqWodUY3ufPb7OXKLAuRAVq832k1FRpkzKNK8UFZ9T6Hu-KWcOpTT2Q16Qiz6dGilyzhFmaoY43uFVY4wT65ucwKLeluwAitaOKuSxxxiUqExo3AM_rgWaLllrQSxj5SVp_No011mF-rv4WX8NxU6zhQyA3MNjvDu4WjszXvqh2d_XX8A3BL6tU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFfRUtRXf7sGjsU02j92jiKViLUWq9Fb2FQiUVJrW3-9ssokIXoQcshNCyG6y8_zmA7hVAZOhluidUBF5Iae-x9Br9pivUrT_0zBJK7KJZDJh8zmftuCuwcIYY8riM3NvT8tcvl6prQ2V9cOIWWDkDuxa5iyH1moiKmic0NgZO3ZM0beJeZNTCCwfS5n7jKkXc5_XMK_Aaqm6-5MbRy4B6g94__Fj-lYVXbrn_yJiKfXQsPO_NziE3g-gj0wbVXUELZMfQ8dZoMT93wWKapKHWtaFh6HAmzNLiJxVkUOSWzt36QCcBI-lLScnItekwAtLUuDCG5Kasmlo0YP34dPsceQ53gUvQ32-8YQYCKkiKnGtYhbTQNsu74JqFQc6slBeFbE0HSjOUklDqoMEtbzCzUIrw9A7P4F2vsrNKRAuTSCoSUKjTCgSJnELsMweaLhILllwBl07SYvPqrXGws3P-d_iG9gfzV7Hi_Hz5OUCDqrSDRsQuYT2Zr01V7CnvjZZsb4uv4xv5eeunQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Face+illumination+normalization+on+large+and+small+scale+features&rft.au=Xiaohua+Xie&rft.au=Wei-Shi+Zheng&rft.au=Jianhuang+Lai&rft.au=Yuen%2C+P.C.&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424422425&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2008.4587811&rft.externalDocID=4587811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon