Deformable part models are convolutional neural networks

Deformable part models (DPMs) and convolutional neural networks (CNNs) are two widely used tools for visual recognition. They are typically viewed as distinct approaches: DPMs are graphical models (Markov random fields), while CNNs are "black-box" non-linear classifiers. In this paper, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 437 - 446
Hlavní autoři: Girshick, Ross, Iandola, Forrest, Darrell, Trevor, Malik, Jitendra
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Deformable part models (DPMs) and convolutional neural networks (CNNs) are two widely used tools for visual recognition. They are typically viewed as distinct approaches: DPMs are graphical models (Markov random fields), while CNNs are "black-box" non-linear classifiers. In this paper, we show that a DPM can be formulated as a CNN, thus providing a synthesis of the two ideas. Our construction involves unrolling the DPM inference algorithm and mapping each step to an equivalent CNN layer. From this perspective, it is natural to replace the standard image features used in DPMs with a learned feature extractor. We call the resulting model a DeepPyramid DPM and experimentally validate it on PASCAL VOC object detection. We find that DeepPyramid DPMs significantly outperform DPMs based on histograms of oriented gradients features (HOG) and slightly outperforms a comparable version of the recently introduced R-CNN detection system, while running significantly faster.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2015.7298641