Improved Probabilistic Intuitionistic Fuzzy c-Means Clustering Algorithm: Improved PIFCM
Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random members...
Gespeichert in:
| Veröffentlicht in: | 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2020
|
| Schriftenreihe: | IEEE International Conference on Fuzzy Systems |
| Schlagworte: | |
| ISBN: | 1728169321, 9781728169330, 172816933X, 9781728169323 |
| ISSN: | 1558-4739 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random membership function \frac{1}{{\left| x \right|}} and discards a data point if its membership value is uniformly distributed in the clusters. Fuzzy clustering always gets affected by the choice of the membership function. Accordingly, in PIFCM algorithm, membership function changes the properties of the data limiting its capabilities in giving consistent clustering results. Moreover, PIFCM algorithm incorporates computation of redundant matrices while finding P ij and Q ij . In this paper, we propose some novel changes in the existing PIFCM algorithm, and hence introduce our Improved PIFCM algorithm. The improved PIFCM algorithm considers the min-max normalization as membership function, and also removes the redundant matrix computation that was used to find the P ij and Q ij in the original PIFCM. Results over various UCI datasets validates the superiority of our improved PIFCM algorithm over FCM algorithm, IFCM algorithm and PIFCM algorithm. |
|---|---|
| AbstractList | Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random membership function 1/|x| and discards a data point if its membership value is uniformly distributed in the clusters. Fuzzy clustering always gets affected by the choice of the membership function. Accordingly, in PIFCM algorithm, membership function changes the properties of the data limiting its capabilities in giving consistent clustering results. Moreover, PIFCM algorithm incorporates computation of redundant matrices while finding P ij and Q ij . In this paper, we propose some novel changes in the existing PIFCM algorithm, and hence introduce our Improved PIFCM algorithm. The improved PIFCM algorithm considers the min-max normalization as membership function, and also removes the redundant matrix computation that was used to find the P ij and Q ij in the original PIFCM. Results over various UCI datasets validates the superiority of our improved PIFCM algorithm over FCM algorithm, IFCM algorithm and PIFCM algorithm. Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random membership function \frac{1}{{\left| x \right|}} and discards a data point if its membership value is uniformly distributed in the clusters. Fuzzy clustering always gets affected by the choice of the membership function. Accordingly, in PIFCM algorithm, membership function changes the properties of the data limiting its capabilities in giving consistent clustering results. Moreover, PIFCM algorithm incorporates computation of redundant matrices while finding P ij and Q ij . In this paper, we propose some novel changes in the existing PIFCM algorithm, and hence introduce our Improved PIFCM algorithm. The improved PIFCM algorithm considers the min-max normalization as membership function, and also removes the redundant matrix computation that was used to find the P ij and Q ij in the original PIFCM. Results over various UCI datasets validates the superiority of our improved PIFCM algorithm over FCM algorithm, IFCM algorithm and PIFCM algorithm. |
| Author | Muhuri, Pranab K. Danish Lohani, Q. M. Varshney, Ayush K. |
| Author_xml | – sequence: 1 givenname: Ayush K. surname: Varshney fullname: Varshney, Ayush K. organization: South Asian University,Department of Computer Science,New Delhi,India – sequence: 2 givenname: Q. M. surname: Danish Lohani fullname: Danish Lohani, Q. M. organization: South Asian University,Department of Mathematics,New Delhi,India – sequence: 3 givenname: Pranab K. surname: Muhuri fullname: Muhuri, Pranab K. organization: South Asian University,Department of Computer Science,New Delhi,India |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-195971$$DView record from Swedish Publication Index (Umeå universitet) |
| BookMark | eNpNkM1Kw0AcxNcvsK0-gSB5gdT970d311tJjQZa9GBFegmbZFNXkmzJJkr79BZa1NMwzG_mMEN03rjGIHQLeAyA1V28XK2YnGAxJpjgsQIhuGAnaAiCSJgoSuAUDYBzGTJB1dn_4BINvf_E-x7maoDek3rTui9TBC-ty3RmK-s7mwdJ0_W2s6452Ljf7bZBHi6MbnwQVb3vTGubdTCt1q613Ud9H_wtJXG0uEIXpa68uT7qCC3jh9foKZw_PybRdB5awqALldGMyszQkklVCCk1oUQpXRjKscZcTzDRuSAFyaDkhtCS5kUJVDKR5RoUHaHwsOu_zabP0k1ra91uU6dtOrNv09S167Sv-xQUVwL2_M2Bt8aYX_p4If0B_btnIg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO ADTPV BNKNJ D93 |
| DOI | 10.1109/FUZZ48607.2020.9177574 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present SwePub SwePub Conference SWEPUB Umeå universitet |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1728169321 9781728169323 |
| EISSN | 1558-4739 |
| EndPage | 6 |
| ExternalDocumentID | oai_DiVA_org_umu_195971 9177574 |
| Genre | orig-research |
| GroupedDBID | -~X 29I 6IE 6IH 6IK 6IL 6IN AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO 6IF 6IG ABQGA ADTPV BNKNJ D93 |
| ID | FETCH-LOGICAL-i241t-9ea438be3f489d788a23299ade350a05a602ac72d2b1f5e23f3cdf13847bca193 |
| IEDL.DBID | RIE |
| ISBN | 1728169321 9781728169330 172816933X 9781728169323 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698733400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue Nov 04 16:46:58 EST 2025 Wed Aug 27 03:03:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-9ea438be3f489d788a23299ade350a05a602ac72d2b1f5e23f3cdf13847bca193 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9177574 swepub_primary_oai_DiVA_org_umu_195971 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-July 2020 |
| PublicationDateYYYYMMDD | 2020-07-01 2020-01-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-July |
| PublicationDecade | 2020 |
| PublicationSeriesTitle | IEEE International Conference on Fuzzy Systems |
| PublicationTitle | 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) |
| PublicationTitleAbbrev | FUZZ |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020059 ssib041313948 |
| Score | 2.1670356 |
| Snippet | Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique,... |
| SourceID | swepub ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 1 |
| SubjectTerms | AIFS based clustering Clustering algorithms Computer Science Conferences datalogi Distributed databases Fuzzy clustering Fuzzy systems IFCM Limiting PEDM PIFCM probabilistic interval Probabilistic logic |
| Title | Improved Probabilistic Intuitionistic Fuzzy c-Means Clustering Algorithm: Improved PIFCM |
| URI | https://ieeexplore.ieee.org/document/9177574 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-195971 |
| WOSCitedRecordID | wos000698733400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA7b8OBp6ibOL3oQT3Zrm7ZpvI1pcYeNHZyMXUo-3uhgHzJbwf16k7Z2IF68tTQJ4Q3lyZO8z_MidBO5KqKe5LaQkto-wdJm3AEbVOgA4ZoAKJEXmyDjcTSb0UkN3VVaGADIk8-gax7zu3y5EZk5KutpakEC4tdRnZCw0GpV5MqoKEsFsOvQXjydz019JaIpoOd0y55lCZVftqA5lMTN_03iCLX3mjxrUqHNMarB-gQ1f4oyWOU_2kKz4pgApGnNc_9cY8VsDTW45OlZxWuc7XZflrBHoLHKGiwzY5igB7b6y9fNdpG-re6t_UjDeDBqo2n8-Dx4ssvyCfZCw3JqU2A-jjhg5UdUaqrL9O6JUiYBBw5zAhY6HhPEkx53VQAeVlhI5WKNV1wwvbE7RY31Zg1nyHICwZQmjizEWDNAnzPhhxwz6mPFfBAd1DKBSt4Lh4ykjFEH3RZxrj4YM-uHxUs_0SFNslWWGG8b4p7_3f8CHZrVK7JjL1Ej3WZwhQ7EZ7r42F7n6_8NXCSz-A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL3UKuiqaivWZxbiymiSyWvclWqwaIsLleImzOOOFvqQ2gj2651JYgRx4y4hmSHczHDmzNx7DsBJ7KqYepLbQkpq-xGRNuMO2qhCByOuCYASudlENBjEwyG9r8FZVQuDiHnyGZ6by_wsX85EZrbKLjS1iILIX4FV45xVVmtV9MrUUZY1wK5DL5LH52fjsBRpEug552Xb0kTllzBoDiZJ43-fsQmtn6o8677Cmy2o4XQbGt-2DFY5S5swLDYKUJq3ea6ga8SYrZ6GlzxBq7hNsuXy0xJ2HzVaWd1xZiQTdMdWZ_wym48Wr5NL66enXtLtt-AxuX7o3tilgYI90sC8sCkyn8QcifJjKjXZZXr9RCmTSAKHOQELHY-JyJMed1WAHlFESOUSjVhcML2024H6dDbFXbCcQDClqSMLCdEc0OdM-CEnjPpEMR9FG5omUOlboZGRljFqw2kR5-qBkbO-Gj11Uh3SNJtkqVG3idy9v9sfw_rNQ_8uvesNbvdhw_zJIlf2AOqLeYaHsCY-FqP3-VE-Fr4A5lC3QQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Fuzzy+Systems+conference+proceedings&rft.atitle=Improved+Probabilistic+Intuitionistic+Fuzzy+c-Means+Clustering+Algorithm%3A+Improved+PIFCM&rft.au=Varshney%2C+Ayush+K.&rft.au=Danish+Lohani%2C+Q.+M.&rft.au=Muhuri%2C+Pranab+K.&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=1558-4739&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FFUZZ48607.2020.9177574&rft.externalDocID=9177574 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728169323/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728169323/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728169323/sc.gif&client=summon&freeimage=true |

