Improved Probabilistic Intuitionistic Fuzzy c-Means Clustering Algorithm: Improved PIFCM

Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random members...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) S. 1 - 6
Hauptverfasser: Varshney, Ayush K., Danish Lohani, Q. M., Muhuri, Pranab K.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2020
Schriftenreihe:IEEE International Conference on Fuzzy Systems
Schlagworte:
ISBN:1728169321, 9781728169330, 172816933X, 9781728169323
ISSN:1558-4739
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random membership function \frac{1}{{\left| x \right|}} and discards a data point if its membership value is uniformly distributed in the clusters. Fuzzy clustering always gets affected by the choice of the membership function. Accordingly, in PIFCM algorithm, membership function changes the properties of the data limiting its capabilities in giving consistent clustering results. Moreover, PIFCM algorithm incorporates computation of redundant matrices while finding P ij and Q ij . In this paper, we propose some novel changes in the existing PIFCM algorithm, and hence introduce our Improved PIFCM algorithm. The improved PIFCM algorithm considers the min-max normalization as membership function, and also removes the redundant matrix computation that was used to find the P ij and Q ij in the original PIFCM. Results over various UCI datasets validates the superiority of our improved PIFCM algorithm over FCM algorithm, IFCM algorithm and PIFCM algorithm.
AbstractList Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random membership function 1/|x| and discards a data point if its membership value is uniformly distributed in the clusters. Fuzzy clustering always gets affected by the choice of the membership function. Accordingly, in PIFCM algorithm, membership function changes the properties of the data limiting its capabilities in giving consistent clustering results. Moreover, PIFCM algorithm incorporates computation of redundant matrices while finding P ij and Q ij . In this paper, we propose some novel changes in the existing PIFCM algorithm, and hence introduce our Improved PIFCM algorithm. The improved PIFCM algorithm considers the min-max normalization as membership function, and also removes the redundant matrix computation that was used to find the P ij and Q ij in the original PIFCM. Results over various UCI datasets validates the superiority of our improved PIFCM algorithm over FCM algorithm, IFCM algorithm and PIFCM algorithm.
Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique, which incorporate computation of probabilistic intervals (P ij , Q ij ) for each of the data point. PIFCM algorithm employs a random membership function \frac{1}{{\left| x \right|}} and discards a data point if its membership value is uniformly distributed in the clusters. Fuzzy clustering always gets affected by the choice of the membership function. Accordingly, in PIFCM algorithm, membership function changes the properties of the data limiting its capabilities in giving consistent clustering results. Moreover, PIFCM algorithm incorporates computation of redundant matrices while finding P ij and Q ij . In this paper, we propose some novel changes in the existing PIFCM algorithm, and hence introduce our Improved PIFCM algorithm. The improved PIFCM algorithm considers the min-max normalization as membership function, and also removes the redundant matrix computation that was used to find the P ij and Q ij in the original PIFCM. Results over various UCI datasets validates the superiority of our improved PIFCM algorithm over FCM algorithm, IFCM algorithm and PIFCM algorithm.
Author Muhuri, Pranab K.
Danish Lohani, Q. M.
Varshney, Ayush K.
Author_xml – sequence: 1
  givenname: Ayush K.
  surname: Varshney
  fullname: Varshney, Ayush K.
  organization: South Asian University,Department of Computer Science,New Delhi,India
– sequence: 2
  givenname: Q. M.
  surname: Danish Lohani
  fullname: Danish Lohani, Q. M.
  organization: South Asian University,Department of Mathematics,New Delhi,India
– sequence: 3
  givenname: Pranab K.
  surname: Muhuri
  fullname: Muhuri, Pranab K.
  organization: South Asian University,Department of Computer Science,New Delhi,India
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-195971$$DView record from Swedish Publication Index (Umeå universitet)
BookMark eNpNkM1Kw0AcxNcvsK0-gSB5gdT970d311tJjQZa9GBFegmbZFNXkmzJJkr79BZa1NMwzG_mMEN03rjGIHQLeAyA1V28XK2YnGAxJpjgsQIhuGAnaAiCSJgoSuAUDYBzGTJB1dn_4BINvf_E-x7maoDek3rTui9TBC-ty3RmK-s7mwdJ0_W2s6452Ljf7bZBHi6MbnwQVb3vTGubdTCt1q613Ud9H_wtJXG0uEIXpa68uT7qCC3jh9foKZw_PybRdB5awqALldGMyszQkklVCCk1oUQpXRjKscZcTzDRuSAFyaDkhtCS5kUJVDKR5RoUHaHwsOu_zabP0k1ra91uU6dtOrNv09S167Sv-xQUVwL2_M2Bt8aYX_p4If0B_btnIg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
ADTPV
BNKNJ
D93
DOI 10.1109/FUZZ48607.2020.9177574
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
SwePub
SwePub Conference
SWEPUB Umeå universitet
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728169321
9781728169323
EISSN 1558-4739
EndPage 6
ExternalDocumentID oai_DiVA_org_umu_195971
9177574
Genre orig-research
GroupedDBID -~X
29I
6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
6IF
6IG
ABQGA
ADTPV
BNKNJ
D93
ID FETCH-LOGICAL-i241t-9ea438be3f489d788a23299ade350a05a602ac72d2b1f5e23f3cdf13847bca193
IEDL.DBID RIE
ISBN 1728169321
9781728169330
172816933X
9781728169323
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698733400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Nov 04 16:46:58 EST 2025
Wed Aug 27 03:03:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-9ea438be3f489d788a23299ade350a05a602ac72d2b1f5e23f3cdf13847bca193
PageCount 6
ParticipantIDs ieee_primary_9177574
swepub_primary_oai_DiVA_org_umu_195971
PublicationCentury 2000
PublicationDate 2020-July
2020
PublicationDateYYYYMMDD 2020-07-01
2020-01-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-July
PublicationDecade 2020
PublicationSeriesTitle IEEE International Conference on Fuzzy Systems
PublicationTitle 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
PublicationTitleAbbrev FUZZ
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020059
ssib041313948
Score 2.1670356
Snippet Recently proposed Probabilistic Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a Probabilistic Euclidian distance measure (PEDM) based clustering technique,...
SourceID swepub
ieee
SourceType Open Access Repository
Publisher
StartPage 1
SubjectTerms AIFS based clustering
Clustering algorithms
Computer Science
Conferences
datalogi
Distributed databases
Fuzzy clustering
Fuzzy systems
IFCM
Limiting
PEDM
PIFCM
probabilistic interval
Probabilistic logic
Title Improved Probabilistic Intuitionistic Fuzzy c-Means Clustering Algorithm: Improved PIFCM
URI https://ieeexplore.ieee.org/document/9177574
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-195971
WOSCitedRecordID wos000698733400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA7b8OBp6ibOL3oQT3Zrm7ZpvI1pcYeNHZyMXUo-3uhgHzJbwf16k7Z2IF68tTQJ4Q3lyZO8z_MidBO5KqKe5LaQkto-wdJm3AEbVOgA4ZoAKJEXmyDjcTSb0UkN3VVaGADIk8-gax7zu3y5EZk5KutpakEC4tdRnZCw0GpV5MqoKEsFsOvQXjydz019JaIpoOd0y55lCZVftqA5lMTN_03iCLX3mjxrUqHNMarB-gQ1f4oyWOU_2kKz4pgApGnNc_9cY8VsDTW45OlZxWuc7XZflrBHoLHKGiwzY5igB7b6y9fNdpG-re6t_UjDeDBqo2n8-Dx4ssvyCfZCw3JqU2A-jjhg5UdUaqrL9O6JUiYBBw5zAhY6HhPEkx53VQAeVlhI5WKNV1wwvbE7RY31Zg1nyHICwZQmjizEWDNAnzPhhxwz6mPFfBAd1DKBSt4Lh4ykjFEH3RZxrj4YM-uHxUs_0SFNslWWGG8b4p7_3f8CHZrVK7JjL1Ej3WZwhQ7EZ7r42F7n6_8NXCSz-A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL3UKuiqaivWZxbiymiSyWvclWqwaIsLleImzOOOFvqQ2gj2651JYgRx4y4hmSHczHDmzNx7DsBJ7KqYepLbQkpq-xGRNuMO2qhCByOuCYASudlENBjEwyG9r8FZVQuDiHnyGZ6by_wsX85EZrbKLjS1iILIX4FV45xVVmtV9MrUUZY1wK5DL5LH52fjsBRpEug552Xb0kTllzBoDiZJ43-fsQmtn6o8677Cmy2o4XQbGt-2DFY5S5swLDYKUJq3ea6ga8SYrZ6GlzxBq7hNsuXy0xJ2HzVaWd1xZiQTdMdWZ_wym48Wr5NL66enXtLtt-AxuX7o3tilgYI90sC8sCkyn8QcifJjKjXZZXr9RCmTSAKHOQELHY-JyJMed1WAHlFESOUSjVhcML2024H6dDbFXbCcQDClqSMLCdEc0OdM-CEnjPpEMR9FG5omUOlboZGRljFqw2kR5-qBkbO-Gj11Uh3SNJtkqVG3idy9v9sfw_rNQ_8uvesNbvdhw_zJIlf2AOqLeYaHsCY-FqP3-VE-Fr4A5lC3QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Fuzzy+Systems+conference+proceedings&rft.atitle=Improved+Probabilistic+Intuitionistic+Fuzzy+c-Means+Clustering+Algorithm%3A+Improved+PIFCM&rft.au=Varshney%2C+Ayush+K.&rft.au=Danish+Lohani%2C+Q.+M.&rft.au=Muhuri%2C+Pranab+K.&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=1558-4739&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FFUZZ48607.2020.9177574&rft.externalDocID=9177574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728169323/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728169323/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728169323/sc.gif&client=summon&freeimage=true