SMPSO: A new PSO-based metaheuristic for multi-objective optimization

In this work, we present a new multi-objective particle swarm optimization algorithm (PSO) characterized by the use of a strategy to limit the velocity of the particles. The proposed approach, called Speed-constrained Multi-objective PSO (SMPSO) allows to produce new effective particle positions in...

Full description

Saved in:
Bibliographic Details
Published in:2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making pp. 66 - 73
Main Authors: Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.
Format: Conference Proceeding
Language:English
Published: IEEE 01.03.2009
Subjects:
ISBN:1424427649, 9781424427642
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we present a new multi-objective particle swarm optimization algorithm (PSO) characterized by the use of a strategy to limit the velocity of the particles. The proposed approach, called Speed-constrained Multi-objective PSO (SMPSO) allows to produce new effective particle positions in those cases in which the velocity becomes too high. Other features of SMPSO include the use of polynomial mutation as a turbulence factor and an external archive to store the non-dominated solutions found during the search. Our proposed approach is compared with respect to five multi-objective metaheuristics representative of the state-of-the-art in the area. For the comparison, two different criteria are adopted: the quality of the resulting approximation sets and the convergence speed to the Pareto front. The experiments carried out indicate that SMPSO obtains remarkable results in terms of both, accuracy and speed.
AbstractList In this work, we present a new multi-objective particle swarm optimization algorithm (PSO) characterized by the use of a strategy to limit the velocity of the particles. The proposed approach, called Speed-constrained Multi-objective PSO (SMPSO) allows to produce new effective particle positions in those cases in which the velocity becomes too high. Other features of SMPSO include the use of polynomial mutation as a turbulence factor and an external archive to store the non-dominated solutions found during the search. Our proposed approach is compared with respect to five multi-objective metaheuristics representative of the state-of-the-art in the area. For the comparison, two different criteria are adopted: the quality of the resulting approximation sets and the convergence speed to the Pareto front. The experiments carried out indicate that SMPSO obtains remarkable results in terms of both, accuracy and speed.
Author Coello Coello, C.A.
Durillo, J.J.
Garcia-Nieto, J.
Luna, F.
Alba, E.
Nebro, A.J.
Author_xml – sequence: 1
  givenname: A.J.
  surname: Nebro
  fullname: Nebro, A.J.
  email: antonio@lcc.uma.es
  organization: Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
– sequence: 2
  givenname: J.J.
  surname: Durillo
  fullname: Durillo, J.J.
  email: duillo@lcc.uma.es
  organization: Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
– sequence: 3
  givenname: J.
  surname: Garcia-Nieto
  fullname: Garcia-Nieto, J.
  email: gnieto@lcc.uma.es
  organization: Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
– sequence: 4
  givenname: C.A.
  surname: Coello Coello
  fullname: Coello Coello, C.A.
  email: ccoello@cs.cinvestav.mx
  organization: Department of Computer Science, CINVESTAVIPN, Mexico
– sequence: 5
  givenname: F.
  surname: Luna
  fullname: Luna, F.
  organization: Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
– sequence: 6
  givenname: E.
  surname: Alba
  fullname: Alba, E.
  organization: Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
BookMark eNotj8tKw0AYhQe0oKl9AHEzL5A412TGXYn1Ag0Vqusyl39wSpOUZKro0xuwZ3M-OPDBydBl13eA0C0lBaVE3zf1Y1MwQnQhNFeKkwuUUcGEYFUp9Axl06Y0KYVSV2gxjnsyRUimSnaNVtvmbbt5wEvcwTeeMLdmBI9bSOYTTkMcU3Q49ANuT4cU897uwaX4Bbg_ptjGX5Ni392gWTCHERbnnqOPp9V7_ZKvN8-v9XKdRyZoyrUngvgQgEthuZfcMuldsEoHqKxW1EnQLJQWPHGVAOEMMSWjoKljMhg-R3f_3ggAu-MQWzP87M63-R9j4E3a
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MCDM.2009.4938830
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 73
ExternalDocumentID 4938830
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-9d040dffe354b3d53b25dcfb89fe7b981c5e92f6bed0c74e4ca0a621e91c25fa3
IEDL.DBID RIE
ISBN 1424427649
9781424427642
ISICitedReferencesCount 555
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272028200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:04:53 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008906488
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-9d040dffe354b3d53b25dcfb89fe7b981c5e92f6bed0c74e4ca0a621e91c25fa3
PageCount 8
ParticipantIDs ieee_primary_4938830
PublicationCentury 2000
PublicationDate 2009-03
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03
PublicationDecade 2000
PublicationTitle 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making
PublicationTitleAbbrev MCDM
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452862
Score 1.9663047
Snippet In this work, we present a new multi-objective particle swarm optimization algorithm (PSO) characterized by the use of a strategy to limit the velocity of the...
SourceID ieee
SourceType Publisher
StartPage 66
SubjectTerms Birds
Contracts
Educational institutions
Genetic algorithms
Genetic mutations
Marine animals
Particle swarm optimization
Performance analysis
Polynomials
Proposals
Title SMPSO: A new PSO-based metaheuristic for multi-objective optimization
URI https://ieeexplore.ieee.org/document/4938830
WOSCitedRecordID wos000272028200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa18eBJTWt8h4NHsfuABbyZ2saDrU2qpreGxxBr0l1Tt_5-YXdbY-LFG3AgwARmmJnvG4SurJCcOScIjU1w3fCYyJQBYRE1KrJAbVXu7fWRj8diNpOTFrreYmEAoEo-g5vQrGL5tjDr4CrrUZkKkfoP-g7nWY3V2vpTAjW4t8432K2EZ1RuKJ2aftJENeNI9kb9-1HNVtlM-qu6SqVchvv_W9YB6v6g9PBkq38OUQvyDhpMR5Pp0y2-w95exr5Jgp6yeAmleoN1zcuMvaWKq1RCUuj3-snDhX88lg0qs4tehoPn_gNpSiWQhVfBJZHWX0brHKSM6tSyVCfMGqeFdMC1FLFhIBOXabCR4RSCIFSWxCBjkzCn0iPUzoscjhFWmaKOZ8YwHej4qDIKlIKE-69ZYDc7QZ1wBPOPmg1j3uz-9O_hM7RXx19C1tY5aperNVygXfNVLj5Xl5UIvwFjTZkq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECVNNdGTmtb4LQePYndZWBZvprapsVubtJreGhaGWJO2pm79_cLuWmPixRtwIMAEZpiZ9wahK5NIwa1NCAu1d92IkMiIA-EB0yowwExR7u2lLwaDZDKRwxq63mBhAKBIPoMb3yxi-Wap195V1mIySpLIfdC3OGM0KNFaG4-KJwd39vk3eouKmMlvUqeqT6u4ZhjIVtq-T0u-ymraX_VVCvXS3fvfwvZR8wenh4cbDXSAarBooM4oHY6ebvEddhYzdk3iNZXBc8jVK6xLZmbsbFVcJBOSZfZWPnp46Z6PeYXLbKLnbmfc7pGqWAKZOSWcE2ncdTTWQsRZFhkeZZQbbbNEWhCZTELNQVIbZ2ACLRh4UaiYhiBDTblV0SGqL5YLOEJYxYpZEWvNM0_Ix5RWoBRQ4T5nnt_sGDX8EUzfSz6MabX7k7-HL9FOb5z2p_2HweMp2i2jMT6H6wzV89UaztG2_sxnH6uLQpxfjyKccQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Symposium+on+Computational+Intelligence+in+Multi-Criteria+Decision-Making&rft.atitle=SMPSO%3A+A+new+PSO-based+metaheuristic+for+multi-objective+optimization&rft.au=Nebro%2C+A.J.&rft.au=Durillo%2C+J.J.&rft.au=Garcia-Nieto%2C+J.&rft.au=Coello+Coello%2C+C.A.&rft.date=2009-03-01&rft.pub=IEEE&rft.isbn=9781424427642&rft.spage=66&rft.epage=73&rft_id=info:doi/10.1109%2FMCDM.2009.4938830&rft.externalDocID=4938830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424427642/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424427642/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424427642/sc.gif&client=summon&freeimage=true