Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time
Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Ando...
Uloženo v:
| Vydáno v: | 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) s. 979 - 990 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2018
|
| Témata: | |
| ISSN: | 2575-8454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this paper, we provide an algorithm with running time Õ(n^2-2/7) that approximates the edit distance within a constant factor. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS.2018.00096 |