Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time
Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Ando...
Uložené v:
| Vydané v: | 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) s. 979 - 990 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2018
|
| Predmet: | |
| ISSN: | 2575-8454 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this paper, we provide an algorithm with running time Õ(n^2-2/7) that approximates the edit distance within a constant factor. |
|---|---|
| ISSN: | 2575-8454 |
| DOI: | 10.1109/FOCS.2018.00096 |