Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time
Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Ando...
Uloženo v:
| Vydáno v: | 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) s. 979 - 990 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2018
|
| Témata: | |
| ISSN: | 2575-8454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this paper, we provide an algorithm with running time Õ(n^2-2/7) that approximates the edit distance within a constant factor. |
|---|---|
| AbstractList | Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this paper, we provide an algorithm with running time Õ(n^2-2/7) that approximates the edit distance within a constant factor. |
| Author | Koucky, Michal Saks, Michael Das, Debarati Goldenberg, Elazar Chakraborty, Diptarka |
| Author_xml | – sequence: 1 givenname: Diptarka surname: Chakraborty fullname: Chakraborty, Diptarka – sequence: 2 givenname: Debarati surname: Das fullname: Das, Debarati – sequence: 3 givenname: Elazar surname: Goldenberg fullname: Goldenberg, Elazar – sequence: 4 givenname: Michal surname: Koucky fullname: Koucky, Michal – sequence: 5 givenname: Michael surname: Saks fullname: Saks, Michael |
| BookMark | eNotj11LwzAYhaMouE6vvfAmf6D1zVebXo66qjAcsno90iTVyJaWNEX3763o1YEHnsM5CbrwvbcI3RLICIHyvt5Wu4wCkRkAlPkZSohgMueUATlHCyoKkUou-BVKxvETgIMAvkAvq2EI_bc7quj8O14bF_GDG6Py2uIvFz-cx1Xvf0HEtdKxD3hGTZgOJ7yb2vR1UibMssaNO9prdNmpw2hv_nOJ3up1Uz2lm-3jc7XapI5yEtNSW4CWdUXLGDelpDpvFVXQFZ1ktCxzngPjgpK2E0aCIIrkZj5nzGwaTdgS3f31Omvtfgjz_nDaSyEEKTj7AUp9Tss |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS.2018.00096 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 1538642301 9781538642306 |
| EISSN | 2575-8454 |
| EndPage | 990 |
| ExternalDocumentID | 8555174 |
| Genre | orig-research |
| GroupedDBID | --Z 29O 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i241t-9ce00b3f7b334d982c6ba2a0f7f83299646034521bf5d8051a16d201dd9cedc13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455014500087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:50:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-9ce00b3f7b334d982c6ba2a0f7f83299646034521bf5d8051a16d201dd9cedc13 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8555174 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10 |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) |
| PublicationTitleAbbrev | SFCS |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0040504 ssj0002683733 |
| Score | 2.387729 |
| Snippet | Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 979 |
| SubjectTerms | Approximation algorithm Approximation algorithms Computer science Dynamic programming Edit distance Heuristic algorithms Indexes Randomized algorithm Runtime Sub quadratic time algorithm Upper bound |
| Title | Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time |
| URI | https://ieeexplore.ieee.org/document/8555174 |
| WOSCitedRecordID | wos000455014500087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMshbaItzwwYurEzmtEpRELpYgidasc20GRUIraBMG_55yEdGFhiy3Fis4538N33wdwjRqjtXZCirYtokLIgEopIsqYcpmH_oXDdUU2Ecxm4XIZzTtw0_bCGGOq4jNzax-ru3y9VqVNlY1Dz7PAyl3oBoFf92q1-RTXx1CLt6cw-iFMNFA-DovG8dPkxRZy2cpJViH077hUKlMS9__3EYcw2vXkkXlrbY6gY_IB9H9JGUijowM4eGyBWLdDmN1ZzPCvzI7zNzLVWUHurctol7M52Cwnk9pFLEhcce8QnFpsyvdvgocKfS6ltj-JIrZZZASv8XQxeaANhQLN0DQXNFKGsYSnQcK50FHoKj-RrmRpkKIqY6wjfMYFmvAk9XSICiodX6OYtMY3tXL4MfTydW5OgAgp_BSDD19LIXhoMPSRrggdR1t8GaNOYWiFtfqoUTJWjZzO_p4-h327G3VZ3AX0ik1pLmFPfRbZdnNVbe0PcX6jHQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNFEvKGD8tgePVrq1-zoaZMEIEyMm3EjXdmaJGQY2o_-97Zjj4sXb2mTN8rrX99H3fj-Aa60xUkrLx9q2BZgx7mHOWYAJETZxtH9hUVmSTXhR5M9mwaQBN3UvjFKqLD5Tt-axvMuXC1GYVFnPdxwDrLwF2w5jNll3a9UZFdvVwRatz2HtiRBWgflYJOiFT_0XU8plaidJidG_YVMpjUnY-t9nHEB305WHJrW9OYSGytrQ-qVlQJWWtmF_XEOxrjoQ3RnU8K_UjLM3NJBpju6N02iWM1nYNEP9tZOYo7Bk30F6aros3r-RPlbwc8Gl-U0EMu0iXXgNB9P-EFckCjjVxjnHgVCExDTxYkqZDHxbuDG3OUm8RCuzjnaYSyjTRjxOHOlrFeWWK7WYpNRvSmHRI2hmi0wdA2KcuYkOP1zJGaO-0sEPt5lvWdIgzChxAh0jrPnHGidjXsnp9O_pK9gdTsej-eghejyDPbMz6yK5c2jmy0JdwI74zNPV8rLc5h8dxqZk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+59th+Annual+Symposium+on+Foundations+of+Computer+Science+%28FOCS%29&rft.atitle=Approximating+Edit+Distance+within+Constant+Factor+in+Truly+Sub-Quadratic+Time&rft.au=Chakraborty%2C+Diptarka&rft.au=Das%2C+Debarati&rft.au=Goldenberg%2C+Elazar&rft.au=Koucky%2C+Michal&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=979&rft.epage=990&rft_id=info:doi/10.1109%2FFOCS.2018.00096&rft.externalDocID=8555174 |