Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time

Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Ando...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) s. 979 - 990
Hlavní autoři: Chakraborty, Diptarka, Das, Debarati, Goldenberg, Elazar, Koucky, Michal, Saks, Michael
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2018
Témata:
ISSN:2575-8454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this paper, we provide an algorithm with running time Õ(n^2-2/7) that approximates the edit distance within a constant factor.
AbstractList Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform one string into the other. The edit distance can be computed exactly using a dynamic programming algorithm that runs in quadratic time. Andoni, Krauthgamer and Onak (2010) gave a nearly linear time algorithm that approximates edit distance within approximation factor poly(log n). In this paper, we provide an algorithm with running time Õ(n^2-2/7) that approximates the edit distance within a constant factor.
Author Koucky, Michal
Saks, Michael
Das, Debarati
Goldenberg, Elazar
Chakraborty, Diptarka
Author_xml – sequence: 1
  givenname: Diptarka
  surname: Chakraborty
  fullname: Chakraborty, Diptarka
– sequence: 2
  givenname: Debarati
  surname: Das
  fullname: Das, Debarati
– sequence: 3
  givenname: Elazar
  surname: Goldenberg
  fullname: Goldenberg, Elazar
– sequence: 4
  givenname: Michal
  surname: Koucky
  fullname: Koucky, Michal
– sequence: 5
  givenname: Michael
  surname: Saks
  fullname: Saks, Michael
BookMark eNotj11LwzAYhaMouE6vvfAmf6D1zVebXo66qjAcsno90iTVyJaWNEX3763o1YEHnsM5CbrwvbcI3RLICIHyvt5Wu4wCkRkAlPkZSohgMueUATlHCyoKkUou-BVKxvETgIMAvkAvq2EI_bc7quj8O14bF_GDG6Py2uIvFz-cx1Xvf0HEtdKxD3hGTZgOJ7yb2vR1UibMssaNO9prdNmpw2hv_nOJ3up1Uz2lm-3jc7XapI5yEtNSW4CWdUXLGDelpDpvFVXQFZ1ktCxzngPjgpK2E0aCIIrkZj5nzGwaTdgS3f31Omvtfgjz_nDaSyEEKTj7AUp9Tss
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS.2018.00096
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1538642301
9781538642306
EISSN 2575-8454
EndPage 990
ExternalDocumentID 8555174
Genre orig-research
GroupedDBID --Z
29O
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i241t-9ce00b3f7b334d982c6ba2a0f7f83299646034521bf5d8051a16d201dd9cedc13
IEDL.DBID RIE
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455014500087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-9ce00b3f7b334d982c6ba2a0f7f83299646034521bf5d8051a16d201dd9cedc13
PageCount 12
ParticipantIDs ieee_primary_8555174
PublicationCentury 2000
PublicationDate 2018-10
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10
PublicationDecade 2010
PublicationTitle 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)
PublicationTitleAbbrev SFCS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
ssj0002683733
Score 2.387729
Snippet Edit distance is a measure of similarity of two strings based on the minimum number of character insertions, deletions, and substitutions required to transform...
SourceID ieee
SourceType Publisher
StartPage 979
SubjectTerms Approximation algorithm
Approximation algorithms
Computer science
Dynamic programming
Edit distance
Heuristic algorithms
Indexes
Randomized algorithm
Runtime
Sub quadratic time algorithm
Upper bound
Title Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time
URI https://ieeexplore.ieee.org/document/8555174
WOSCitedRecordID wos000455014500087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMshbaItzwwYurEzmtEpRELpYgidasc20GRUIraBMG_55yEdGFhiy3Fis4538N33wdwjRqjtXZCirYtokLIgEopIsqYcpmH_oXDdUU2Ecxm4XIZzTtw0_bCGGOq4jNzax-ru3y9VqVNlY1Dz7PAyl3oBoFf92q1-RTXx1CLt6cw-iFMNFA-DovG8dPkxRZy2cpJViH077hUKlMS9__3EYcw2vXkkXlrbY6gY_IB9H9JGUijowM4eGyBWLdDmN1ZzPCvzI7zNzLVWUHurctol7M52Cwnk9pFLEhcce8QnFpsyvdvgocKfS6ltj-JIrZZZASv8XQxeaANhQLN0DQXNFKGsYSnQcK50FHoKj-RrmRpkKIqY6wjfMYFmvAk9XSICiodX6OYtMY3tXL4MfTydW5OgAgp_BSDD19LIXhoMPSRrggdR1t8GaNOYWiFtfqoUTJWjZzO_p4-h327G3VZ3AX0ik1pLmFPfRbZdnNVbe0PcX6jHQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNFEvKGD8tgePVrq1-zoaZMEIEyMm3EjXdmaJGQY2o_-97Zjj4sXb2mTN8rrX99H3fj-Aa60xUkrLx9q2BZgx7mHOWYAJETZxtH9hUVmSTXhR5M9mwaQBN3UvjFKqLD5Tt-axvMuXC1GYVFnPdxwDrLwF2w5jNll3a9UZFdvVwRatz2HtiRBWgflYJOiFT_0XU8plaidJidG_YVMpjUnY-t9nHEB305WHJrW9OYSGytrQ-qVlQJWWtmF_XEOxrjoQ3RnU8K_UjLM3NJBpju6N02iWM1nYNEP9tZOYo7Bk30F6aros3r-RPlbwc8Gl-U0EMu0iXXgNB9P-EFckCjjVxjnHgVCExDTxYkqZDHxbuDG3OUm8RCuzjnaYSyjTRjxOHOlrFeWWK7WYpNRvSmHRI2hmi0wdA2KcuYkOP1zJGaO-0sEPt5lvWdIgzChxAh0jrPnHGidjXsnp9O_pK9gdTsej-eghejyDPbMz6yK5c2jmy0JdwI74zNPV8rLc5h8dxqZk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+59th+Annual+Symposium+on+Foundations+of+Computer+Science+%28FOCS%29&rft.atitle=Approximating+Edit+Distance+within+Constant+Factor+in+Truly+Sub-Quadratic+Time&rft.au=Chakraborty%2C+Diptarka&rft.au=Das%2C+Debarati&rft.au=Goldenberg%2C+Elazar&rft.au=Koucky%2C+Michal&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=979&rft.epage=990&rft_id=info:doi/10.1109%2FFOCS.2018.00096&rft.externalDocID=8555174