Use of relaxation methods in sampling-based algorithms for optimal motion planning
Several variants of incremental sampling-based algorithms have been recently proposed in order to optimally solve motion planning problems. Popular examples include the RRT* and the PRM* algorithms. These algorithms are asymptotically optimal and thus provide high quality solutions. However, the con...
Uloženo v:
| Vydáno v: | 2013 IEEE International Conference on Robotics and Automation s. 2421 - 2428 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2013
|
| Témata: | |
| ISBN: | 1467356417, 9781467356411 |
| ISSN: | 1050-4729 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Several variants of incremental sampling-based algorithms have been recently proposed in order to optimally solve motion planning problems. Popular examples include the RRT* and the PRM* algorithms. These algorithms are asymptotically optimal and thus provide high quality solutions. However, the convergence rate to the optimal solution may still be slow. Borrowing from ideas used in the well-known LPA* algorithm, in this paper we present a new incremental sampling-based motion planning algorithm based on Rapidly-exploring Random Graphs (RRG), denoted by RRT # (RRT "sharp"), which also guarantees asymptotic optimality, but, in addition, it also ensures that the constructed spanning tree rooted at the initial state contains lowest-cost path information for vertices which have the potential to be part of the optimal solution. This implies that the best possible solution is readily computed if there are some vertices in the current graph that are already in the goal region. |
|---|---|
| AbstractList | Several variants of incremental sampling-based algorithms have been recently proposed in order to optimally solve motion planning problems. Popular examples include the RRT* and the PRM* algorithms. These algorithms are asymptotically optimal and thus provide high quality solutions. However, the convergence rate to the optimal solution may still be slow. Borrowing from ideas used in the well-known LPA* algorithm, in this paper we present a new incremental sampling-based motion planning algorithm based on Rapidly-exploring Random Graphs (RRG), denoted by RRT # (RRT "sharp"), which also guarantees asymptotic optimality, but, in addition, it also ensures that the constructed spanning tree rooted at the initial state contains lowest-cost path information for vertices which have the potential to be part of the optimal solution. This implies that the best possible solution is readily computed if there are some vertices in the current graph that are already in the goal region. |
| Author | Arslan, Oktay Tsiotras, Panagiotis |
| Author_xml | – sequence: 1 givenname: Oktay surname: Arslan fullname: Arslan, Oktay email: oktay@gatech.edu organization: School of Aerospace Engineering at the Georgia Institute of Technology, Atlanta, 30332-0150, USA – sequence: 2 givenname: Panagiotis surname: Tsiotras fullname: Tsiotras, Panagiotis email: tsiotras@gatech.edu organization: School of Aerospace Engineering and the Center for Robotics and Intelligent Machines at the Georgia Institute of Technology, Atlanta, 30332-0150, USA |
| BookMark | eNo1kN1Kw0AUhFesYFv7AOLNvkDqOdmfZC9L0FooCMVel21ztl1JdkM2F_r2Bq1Xw8DM8DEzNgkxEGOPCEtEMM-barda5oBiqbUAA_qGLUxRotSFUFoKdctm_waLCZsiKMhkkZt7tkjpEwByXQpp9JTt9ol4dLynxn7ZwcfAWxousU7cB55s2zU-nLOjTVRz25xj74dLm7iLPY_d4Fvb8Db-9rrGhjCGH9ids02ixVXnbP_68lG9Zdv39aZabTOfSxwygyWUR4WEskZjc-lGIKVtqZ2zlhSgkqXSzpwcnEgZK0kJZ0xR17khEGLOnv52PREdun5k6b8P10vED6X7VN0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICRA.2013.6630906 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore (IEEE/IET Electronic Library - IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781467356435 1467356433 |
| EndPage | 2428 |
| ExternalDocumentID | 6630906 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i241t-91808b51e14d19a24f49656a86ffaae50154856f9cf0ce59a4e53f997dd29e033 |
| IEDL.DBID | RIE |
| ISBN | 1467356417 9781467356411 |
| ISICitedReferencesCount | 146 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337617302064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1050-4729 |
| IngestDate | Wed Aug 13 06:23:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-91808b51e14d19a24f49656a86ffaae50154856f9cf0ce59a4e53f997dd29e033 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6630906 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05 |
| PublicationDateYYYYMMDD | 2013-05-01 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05 |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 IEEE International Conference on Robotics and Automation |
| PublicationTitleAbbrev | ICRA |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683496 ssj0003366 |
| Score | 1.971455 |
| Snippet | Several variants of incremental sampling-based algorithms have been recently proposed in order to optimally solve motion planning problems. Popular examples... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2421 |
| SubjectTerms | Boundary conditions Classification algorithms Convergence Costs Directed graphs Heuristic algorithms Planning Relaxation methods Robots Space exploration |
| Title | Use of relaxation methods in sampling-based algorithms for optimal motion planning |
| URI | https://ieeexplore.ieee.org/document/6630906 |
| WOSCitedRecordID | wos000337617302064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVKxQALjxbxlgdG3DqJH_GIEBUsVVVRqVvl-lEqtUnVpIjPx3ZCAImFLcmQRNfSPffa95wDwJ00xDUVViOiCEFEaokcjCgklVSKS4UJ18Fsgg-H6XQqRi1w33BhjDFh-Mz0_GU4y9e52vmtsr5DRyy8vvYe56ziajX7KTFLvfZ5k4WTJJxTuvIBI-IqyEDqYjyhjET8S-upvo_q484Ii_7L4_jBT3wlvfprv2xXAuoMjv73v8eg-03fg6MGmE5Ay2Sn4PCH8mAHjCeFgbmFnsryERYHVl7SBVxmsJB-zjxbII9xGsrVIt8uy7d1AV2JC3OXZdZyBSsDILipbY-6YDJ4en18RrW9Alo62C5dmktxOqeRiYiOhIyJ9drxTKbMWikNDd0MZVYoiz1ZSxJDEysE1zoWxgX4DLSzPDPnABKHcXiuXGuI3UuSWEgxj72PuWaWakovQMdHZ7apFDRmdWAu_358BQ7iYDrhxwqvQbvc7swN2Ffv5bLY3oZl_wToYKcI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF7EFtpe-tDSd_fQY1fz2E2yxyIVpVZEFLzJug8b0ERMLP353d2kaQu99JYE8mA2zDezM_N9ADwwiXVSoQTCHGOEmWBIwwhHjDPOQ8YdHAorNhEOh9FsRkc18FjNwkgpbfOZbJlDW8sXKd-ZrbK2RkeHGn7tPaucVUxrVTsqXhAZ9vPKD_u-rVTqAMJBWMeQdqwrCH0S6Hu_2J7Kc7cseLoObfc74yfT8-W3yvf9El6xuNM9_t8Xn4Dm9wAfHFXQdApqMjkDRz-4BxtgPM0kTBU0wywfdnlgoSadwTiBGTOd5skSGZQTkK2W6TbO39YZ1EEuTLWfWbMVLCSA4KYUPmqCafd50umhUmABxRq4c-3oIidaEFe6WLiUeVgZ9viARYFSjEli8xkSKMqVY8a1GJbEV5SGQnhUagOfg3qSJvICQKxRzllwnRw6-iG-RxldeEbJXASKCEIuQcNYZ74pODTmpWGu_r58Dw56k9fBfNAfvlyDQ89KUJgmwxtQz7c7eQv2-XseZ9s7-wt8AtwzqlU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=Use+of+relaxation+methods+in+sampling-based+algorithms+for+optimal+motion+planning&rft.au=Arslan%2C+Oktay&rft.au=Tsiotras%2C+Panagiotis&rft.date=2013-05-01&rft.pub=IEEE&rft.isbn=9781467356411&rft.issn=1050-4729&rft.spage=2421&rft.epage=2428&rft_id=info:doi/10.1109%2FICRA.2013.6630906&rft.externalDocID=6630906 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-4729&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-4729&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-4729&client=summon |

